Skip to main content

Advertisement

Log in

Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The colonic microbiota plays an important role in the bioavailibility of dietary polyphenols. This work has evaluated the impact on the gut microbiota of long-term feeding with both a red wine polyphenolic extract and the flavan-3-ol metabolizer strain Lactobacillus plantarum IFPL935. The study was conducted in the dynamic Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The feeding of the gut microbiota model with red wine polyphenols caused an initial decrease in the counts of total bacteria in the ascending colon (AC), with Bacteroides, Clostridium coccoides/Eubacterium rectale and Bifidobacterium being the most affected bacterial groups. The bacterial counts recovered to initial numbers faster than the overall microbial fermentation and proteolysis, which seemed to be longer affected by polyphenols. Addition of L. plantarum IFPL935 helped to promptly recover total counts, Lactobacillus and Enterobacteriaceae and led to an increase in lactic acid formation in the AC vessel at the start of the polyphenol treatment as well as butyric acid in the transverse (TC) and descending (DC) vessels after 5 days. Moreover, L. plantarum IFPL935 favoured the conversion in the DC vessel of monomeric flavan-3-ols and their intermediate metabolites into phenylpropionic acids and in particular 3-(3′-hydroxyphenyl)propionic acid. The results open the possibilities of using L. plantarum IFPL935 as a food ingredient for helping individuals showing a low polyphenol-fermenting metabotype to increase their colonic microbial capacities of metabolizing dietary polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arranz S, Chiva-Blanch G, Valderas-Martínez P, Medina-Remón A, Lamuela-Raventós RM, Estruch R (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 4:759–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barroso E, Sánchez-Patán F, Martín-Alvarez PJ, Bartolomé B, Moreno-Arribas MV, Peláez C, Requena T, Van de Wiele T, Martínez-Cuesta MC (2013) Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota. J Agric Food Chem 61:10163–10172

    Article  CAS  PubMed  Google Scholar 

  • Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, Lopez S (2012) Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 176:78–93

    Article  CAS  Google Scholar 

  • Bolca S, Van de Wiele T, Possemiers S (2013) Gut metabotypes govern health effects of dietary polyphenols. Curr Opin Biotechnol 24:220–225

    Article  CAS  PubMed  Google Scholar 

  • Bremner JM, Keeney RD (1965) Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal Chim Acta 32:485–495

    Article  CAS  Google Scholar 

  • Busquet M, Calsamiglia S, Ferret A, Kamel C (2005) Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim Feed Sci Technol 124:597–613

    Article  Google Scholar 

  • Cueva C, Sánchez-Patán F, Monagas M, Walton GE, Gibson GR, Martín-Álvarez PJ, Bartolomé B, Moreno-Arribas MV (2013) In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol 83:792–805

    Article  CAS  PubMed  Google Scholar 

  • Daglia M (2012) Polyphenols as antimicrobial agents. Curr Opin Biotechnol 23:174–181

    Article  CAS  PubMed  Google Scholar 

  • De Boever P, Deplancke B, Verstraete W (2000) Fermentation by gut microbiota cultured in a Simulator of the Human Intestinal Microbial Ecosystem is improved by supplementing a soygerm powder. J Nutr 130:2599–2606

    PubMed  Google Scholar 

  • Dolara P, Luceri C, De FC, Femia AP, Giovannelli L, Caderni G, Cecchini C, Silvi S, Orpianesi C, Cresci A (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 591:237–246

    Article  CAS  PubMed  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T (2009) Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 69:231–242

    Article  CAS  PubMed  Google Scholar 

  • Hartemink R, Domenech VR, Rombouts FM (1997) LAMVAB — a new selective medium for the isolation of lactobacilli from faeces. J Microbiol Methods 29:77–84

    Article  CAS  Google Scholar 

  • Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs DM, Fuhrmann JC, van Dorsten FA, Rein D, Peters S, van Velzen EJ, Hollebrands B, Draijer R, van Duynhoven J, Garczarek U (2012) Impact of short-term intake of red wine and grape polyphenol extract on the human metabolome. J Agric Food Chem 60:3078–3085

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Girόn A, Queipo-Ortuño MI, Boto-Ordόñez M, Muñoz-González I, Sánchez-Patán F, Monagas M, Martín-Álvarez PJ, Murri M, Tinahones FJ, Andrés-Lacueva C, Bartolomé B, Moreno-Arribas MV (2013) Comparative study of microbial-derived phenolic metabolites in human feces after intake of gin, red wine, and dealcoholized red wine. J Agric Food Chem 61:3909–3915

    Article  Google Scholar 

  • Jin JS, Hattori M (2012) Isolation and characterization of a human intestinal bacterium Eggerthella sp. CAT-1 capable of cleaving the C-ring of (+)-catechin and (−)-epicatechin, followed by p-dehydroxylation of the B-ring. Biol Pharm Bull 35:2252–2256

    Article  CAS  PubMed  Google Scholar 

  • Kemperman RA, Gross G, Mondot S, Possemiers S, Marzorati M, Van de Wiele T, Dore J, Vaughan EE (2013) Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res Int 53:659–669

    Article  CAS  Google Scholar 

  • Kishimoto Y, Tani M, Kondo K (2013) Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases. Eur J Clin Nutr 67:532–535

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Bodelier PLE, Heilig GHJ, Stephen JR, Laanbroek HJ (1998) Community analysis of ammonia oxidizing bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiol Ecol 27:339–350

    Article  CAS  Google Scholar 

  • Kutschera M, Engst W, Blaut M, Braune A (2011) Isolation of catechin-converting human intestinal bacteria. J Appl Microbiol 111:165–175

    Article  CAS  PubMed  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, MetaHIT consortium (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    Article  PubMed  Google Scholar 

  • Marzorati M, Verhelst A, Luta G, Sinnott R, Verstraete W, Van de Wiele T, Possemiers S (2010) In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int J Food Microbiol 139:168–176

    Article  CAS  PubMed  Google Scholar 

  • Monagas M, Khan N, Andrés-Lacueva C, Urpí-Sardá M, Vázquez-Agell M, Lamuela-Raventós RM, Estruch R (2009) Dihydroxylated phenolic acids derived from microbial metabolism reduce lipopolysaccharide-stimulated cytokine secretion by human peripheral blood mononuclear cells. Br J Nutr 102:201–206

    Article  CAS  PubMed  Google Scholar 

  • Monagas M, Urpi-Sarda M, Sánchez-Patán F, Llorach R, Garrido I, Gómez-Cordovés C, Andrés-Lacueva C, Bartolome B (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1:233–253

    Article  CAS  PubMed  Google Scholar 

  • Possemiers S, Verthé K, Uyttendaele S, Verstraete W (2004) PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 49:495–507

    Article  CAS  PubMed  Google Scholar 

  • Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gómez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona Díaz F, Andrés-Lacueva C, Tinahones FJ (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95:1323–1334

    Article  PubMed  Google Scholar 

  • Rechner AR, Kroner C (2005) Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thromb Res 116:327–334

    Article  CAS  PubMed  Google Scholar 

  • Requena T, Monagas M, Pozo-Bayón MA, Martín-Alvárez PJ, Bartolomé B, Del Campo R, Avila M, Martínez-Cuesta MC, Pelaez C, Moreno-Arribas MV (2010) Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci Technol 21:332–344

    Article  CAS  Google Scholar 

  • Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, Anderson SE, Flint HJ (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57:523–535

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Patán F, Monagas M, Moreno-Arribas MV, Bartolomé B (2011) Determination of microbial phenolic acids in human faeces by UPLC–ESI-TQ MS. J Agric Food Chem 59:2241–2247

    Article  PubMed  Google Scholar 

  • Sánchez-Patán F, Cueva C, Monagas M, Walton GE, Gibson GR, Quintanilla-López JE, Lebrón-Aguilar R, Martín-Álvarez PJ, Moreno-Arribas MV, Bartolomé B (2012a) In vitro fermentation of a red wine extract by human gut microbiota: Changes in microbial groups and formation of phenolic metabolites. J Agric Food Chem 60:2136–2147

    Article  PubMed  Google Scholar 

  • Sánchez-Patán F, Tabasco R, Monagas M, Requena T, Peláez C, Moreno-Arribas MV, Bartolomé B (2012b) Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. J Agric Food Chem 60:7142–7151

    Article  PubMed  Google Scholar 

  • Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501

    Article  CAS  PubMed  Google Scholar 

  • Stevenson DE, Hurst RD (2007) Polyphenolic phytochemicals—just antioxidants or much more? Cell Mol Life Sci 64:2900–2916

    Article  CAS  PubMed  Google Scholar 

  • Tabasco R, Sánchez-Patán F, Monagas M, Bartolomé B, Moreno-Arribas MV, Peláez C, Requena T (2011) Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol 28:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Tomás-Barberán FA, Andrés-Lacueva C (2012) Polyphenols and health: current state and progress. J Agric Food Chem 60:8773–8775

    Article  PubMed  Google Scholar 

  • Tzounis X, Vulevic J, Kuhnle GC, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JP (2008) Flavonol monomer induced changes to the human faecal microflora. Br J Nutr 99:782–792

    Article  CAS  PubMed  Google Scholar 

  • Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JPE (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93:62–72

    Article  CAS  PubMed  Google Scholar 

  • Van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W (2007) Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 102:452–460

    PubMed  Google Scholar 

  • Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, Van de Wiele T (2010) Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:5237–5246

    Article  PubMed Central  PubMed  Google Scholar 

  • Van den Abbeele P, Venema K, Van de Wiele T, Verstraete W, Possemiers S (2013) Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin. J Agric Food Chem 61:9819–9827

    Article  PubMed  Google Scholar 

  • Van Dorsten FA, Peters S, Gross G, Gómez-Roldán V, Klinkenberg M, De Vos RC, Vaughan EE, Van Duynhoven JP, Possemiers S, Van de Wiele T, Jacobs DM (2012) Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. J Agric Food Chem 60:11331–11342

    Article  PubMed  Google Scholar 

  • Van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, Van Velzen EJ, Gross G, Roger LC, Possemiers S, Smilde AK, Doré J, Westerhuis JA, Van de Wiele T (2011) Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A 108:4531–4538

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang LQ, Meselhy MR, Li Y, Nakamura N, Min BS, Qin GW, Hattori M (2001) The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem Pharm Bull 49:1640–1643

    Article  CAS  PubMed  Google Scholar 

  • Ward NC, Croft KD, Puddey IB, Hodgson JM (2004) Supplementation with grape seed polyphenols results in increased urinary excretion of 3-hydroxyphenylpropionic acid, an important metabolite of proanthocyanidins in humans. J Agric Food Chem 52:5545–5549

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse AL (2002) Wine phenolics. Ann N Y Acad Sci 957:21–36

    Article  CAS  PubMed  Google Scholar 

  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia EQ, Deng GF, Guo YJ, Li HB (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11:622–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Spanish Ministry for Science and Innovation (AGL2009-13361-C02-00, AGL2010-17499, AGL2012-35814, AGL2012-40172-C02-01, and Consolider Ingenio 2010 FUN-C-FOOD CSD2007-00063), the Comunidad de Madrid (ALIBIRD P2009/AGR-1469), the INIA (RM2011-00003-00-00) and CYTED (IBEROFUN 110 AC0386). The authors are participants in the COST Action FA1005 INFOGEST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Requena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroso, E., Van de Wiele, T., Jiménez-Girón, A. et al. Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Appl Microbiol Biotechnol 98, 6805–6815 (2014). https://doi.org/10.1007/s00253-014-5744-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5744-1

Keywords

Navigation