Skip to main content
Log in

Calmodulin-binding transcription activators and perspectives for applications in biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, a novel family of calmodulin-binding transcription activators (CAMTAs) has been reported in various species. The CAMTAs share a conserved domain organization, with a CG-1 DNA-binding domain, a transcription factor immunoglobulin domain, several ankyrin repeats, a calmodulin-binding domain, and a varying number of IQ motifs. CAMTAs participate in transcriptional regulation by recognizing and binding to a specific cis-element: (G/A/C)CGCG(C/G/T). Plants suffer from the environmental challenges, including abiotic and biotic stresses. Investigations in various plant species indicate a broad range of CAMTA functions involved in developmental regulation, environmental stress response, and hormone cross talk. In this review, we focus on the expression patterns and biological functions of CAMTAs to explore their probable applications in biotechnology. Furthermore, the identification and phylogenetic analysis of CAMTAs in crops could open new perspectives for enhancing stress tolerance, which could lead to improved crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53(6):412–428

    Article  CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19(2):90–98

    Article  CAS  PubMed  Google Scholar 

  • Bahler M, Rhoads A (2002) Calmodulin signaling via the IQ motif. FEBS Lett 513(1):107–113

    Article  CAS  PubMed  Google Scholar 

  • Benn G, Wang CQ, Hicks DR, Stein J, Guthrie C, Dehesh K (2014) A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. Plant J 80(1):82–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  CAS  PubMed  Google Scholar 

  • Choi MS, Kim MC, Yoo JH, Moon BC, Koo SC, Park BO, Lee JH, Koo YD, Han HJ, Lee SY, Chung WS, Lim CO, Cho MJ (2005) Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). J Biol Chem 280(49):40820–40831

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457(7233):1154–1158

    Article  CAS  PubMed  Google Scholar 

  • Finkler A, Ashery-Padan R, Fromm H (2007) CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett 581(21):3893–3898

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouche N, Knight MR, Fromm H (2010a) Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232(1):165–178

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010b) Calcium-regulated transcription in plants. Mol Plant 3(4):653–669

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H (2008) Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett 582(6):943–948

    Article  CAS  PubMed  Google Scholar 

  • Galon Y, Snir O, Fromm H (2010c) How calmodulin binding transcription activators (CAMTAs) mediate auxin responses. Plant Signal Behav 5(10):1311–1314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55(2):335–347

    Article  CAS  PubMed  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+−responsive cis elements in Arabidopsis. Plant Cell 18(10):2733–2748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SM, Suh JP, Lee CK, Lee JH, Kim YG, Jena KK (2014) QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Genet Genomics 289(3):333–343

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75(3):364–376

    Article  CAS  PubMed  Google Scholar 

  • Koo SC, Choi MS, Chun HJ, Shin DB, Park BS, Kim YH, Park HM, Seo HS, Song JT, Kang KY, Yun DJ, Chung WS, Cho MJ, Kim MC (2009) The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Mol Cells 27(5):563–570

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laluk K, Prasad KV, Savchenko T, Celesnik H, Dehesh K, Levy M, Mitchell-Olds T, Reddy AS (2012) The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis. Plant Cell Physiol 53(12):2008–2015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171(2):249–269

    Article  CAS  PubMed  Google Scholar 

  • Lee HG, Seo PJ (2015) The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J 82(6):962–977

    Article  CAS  PubMed  Google Scholar 

  • Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303(5662):1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Li X, Huang L, Zhang Y, Ouyang Z, Hong Y, Zhang H, Li D, Song F (2014) Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. BMC Plant Biol 14(1):286

    Article  PubMed Central  PubMed  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10(8):383–389

    Article  CAS  PubMed  Google Scholar 

  • Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol 158(4):1847–1859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52(9):1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Xi J, Du L, Suttle JC, Poovaiah BW (2012) Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. Plant Mol Biol 79(1–2):89–99

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160(3):381–404

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23(6):2010–2032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11(5):331–340

    CAS  PubMed  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shangguan L, Wang X, Leng X, Liu D, Ren G, Tao R, Zhang C, Fang J (2014) Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Mol Biol Rep 41(5):2937–2949

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65(5):497–503

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Zhang ZB, Shao HB, Guo XL, Cao HX, Zhao HB, Fu ZY, Hu XJ (2008) Relationship between calcium decoding elements and plant abiotic-stress resistance. Int J Biol Sci 4(2):116–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19(5):765–777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154(2):571–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H (2015) SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression. Plant Physiol 167(3):991–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K (2007) Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 3(10):1800–1812

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Shang JX, Chen QX, Oses-Prieto JA, Bai MY, Yang Y, Yuan M, Zhang YL, Mu CC, Deng Z, Wei CQ, Burlingame AL, Wang ZY, Sun Y (2013) Identification of BZR1-interacting proteins as potential components of the brassinosteroid signaling pathway in Arabidopsis through tandem affinity purification. Mol Cell Proteomics 12(12):3653–3665

  • Wang G, Zeng H, Hu X, Zhu Y, Chen Y, Shen C, Wang H, Poovaiah BW, Du L (2015) Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant and Soil 386:205–221

    Article  CAS  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Peng H, Whitaker BD, Conway WS (2012) Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biol 12:19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang T, Peng H, Whitaker BD, Jurick WM (2013) Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. Physiol Plant 148(3):445–455

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2000) An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J Biol Chem 275(49):38467–38473

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277(47):45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Sun T, Xu L, Pi E, Wang S, Wang H, Shen C (2015) Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments. Front Plant Sci 6:459

    PubMed Central  PubMed  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65(4):634–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Du L, Poovaiah BW (2014) Calcium signaling and biotic defense responses in plants. Plant Signal Behav 9(11), e973818

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4(5):401–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors were funded by the National Natural Science Foundation of China (31401935) and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ14C060001.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqun Du or Huizhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Yang, Y., Du, L. et al. Calmodulin-binding transcription activators and perspectives for applications in biotechnology. Appl Microbiol Biotechnol 99, 10379–10385 (2015). https://doi.org/10.1007/s00253-015-6966-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6966-6

Keywords

Navigation