Skip to main content
Log in

Hierarchical nanostructures of Au@ZnO: antibacterial and antibiofilm agent

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The perpetual use of antibiotics against pathogens inadvertently altered their genes that have translated into an unprecedented resistance in microorganisms in the twenty-first century. Many researchers have formulated bactericidal and bacteriostatic inorganic nanoparticle-based antiseptics that may be linked to broad-spectrum activity and far lower propensity to induce microbial resistance than organic-based antibiotics. Based on this line, herein, we present observations on microbial abatement using gold-based zinc oxide nanostructures (Au@ZnO) which are synthesized using hydrothermal route. Inhibition of microbial growth and biofilm using Au@ZnO is a unique feature of our study. Furthermore, this study evinces antimicrobial and antibiofilm mechanisms of photo-eradiated Au@ZnO by disruption of cellular functions and biofilms via reactive oxygen species (ROS)-dependent generation of superoxide anion radical. The present study is significant as it introduces novel functionalities to Au@ZnO in the biomedical field which can be extended to other species of microbial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bjarnsholt (2013) The role of bacterial biofilms in chronic infections. APMIS Suppl 136:1–51

    Article  PubMed  Google Scholar 

  • Campoccia D, Montanaro L, Arciola C (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554

    Article  CAS  PubMed  Google Scholar 

  • Chang T, Li Z, Yun G, Jia Y, Yang H (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method. Nano-Micro Lett 5:163–168

    Article  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52:1636–1653

    Article  CAS  Google Scholar 

  • Colon G, Ward B, Webster T (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A 78:595–604

    Article  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  PubMed  Google Scholar 

  • De Faria A, Martinez D, Meira S, De Moraes A, Brandelli A, Filho A, Alves O (2014) Anti-adhesion and anti-bacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B 113:115–124

    Article  Google Scholar 

  • de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock R (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589

    Article  PubMed  Google Scholar 

  • Deng Q, Duan X, Ng DHL, Tang H, Yang Y, Kong M, Wu Z, Cai W, Wang G (2012) Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl Mater Inter 4:6030–6037

    Article  CAS  Google Scholar 

  • Dongguang Y, Le Z, Binhu L, Minghong W (2012) Ag/ZnO-C nanocomposite-preparation and photocatalytic properties. J Nanosci Nanotechnol 12:2248–2253

    Article  Google Scholar 

  • Durmus N, Taylor E, Kummer K, Webster T (2013) Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv Mater 25:5706–5713

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Ganguly B (2012) Characterization of ZnO nanoparticles grown in presence of folic acid template. J Nanobiotechnol 10:29

    Article  CAS  Google Scholar 

  • Gholap H, Patil R, Yadav P, Banpurkar A, Ogale S, Gade W (2013) CdTe–TiO2 nanocomposite: an impeder of bacterial growth and biofilm. Nanotechnology 24:195101

    Article  PubMed  Google Scholar 

  • He D, Jones A, Garg S, Pham A, Waite T (2011) Silver nano-particle reactive oxygen species interactions: application of a charging–discharging model. J Phys Chem C 115:5461–5468

    Article  CAS  Google Scholar 

  • He W, Kim H, Wamer W, Melka D, Callahan J, Yin J (2014) Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 136:750–757

    Article  CAS  PubMed  Google Scholar 

  • Inbakandan D, Kumar C, Abraham L, Kirubagaran R, Venka-tesan R, Khan S (2013) Silver nanoparticles with anti microfouling effect: a study against marine biofilm forming bacteria. Colloids Surf B 111:636–643

    Article  CAS  Google Scholar 

  • Kelly K, Coronado E, Zhao L, Schatz G (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Lee J, Shim H, Lee M, Song K, Dongil D (2011) Size-controlled electron transfer and photocatalytic activity of ZnO-Au nanoparticle composites. J Phys Chem Lett 2:2840–2845

    Article  CAS  Google Scholar 

  • Lemire J, Milandu Y, Auger C, Bignucolo A, Appanna P, Appanna D (2010) Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiol Lett 309:170–177

    CAS  PubMed  Google Scholar 

  • Li Y, Feng H, Zhang N, Liu C (2009) Hydrothermal synthesis and characterization of tube-structured ZnO needles. Mater Sci Poland 27:551–557

    CAS  Google Scholar 

  • Li C, Yang L, Xiao J, Wu Y, Søndergaard M, Luo Y, Li D, Meng Q, Iversen B (2013) ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells. Phys Chem Chem Phys 15:8710–8715

    Article  CAS  PubMed  Google Scholar 

  • Lipovsky A, Gedanken A, Lubart R (2013) Visible light-induced antibacterial activity of metal oxide nanoparticles. Photomed Laser Surg 31:526–530

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu X, Cao H, Chang R (2004) Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 95:3141–3147

    Article  CAS  Google Scholar 

  • Ma H, Williams P, Diamond S (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  • McIntyre R (2012) Common nanomaterials and their use in real world applications. Sci Prog 95:1–22

    Article  CAS  PubMed  Google Scholar 

  • Mubeen S, Lee J, Singh N, Krämer S, Stucky G, Moskovits M (2013) Autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251

    Article  CAS  PubMed  Google Scholar 

  • Murugadoss G (2012) ZnO/CdS nanocomposites: synthesis, structure and morphology. Particuology 10:722–728

    Article  CAS  Google Scholar 

  • Panmand R, Patil R, Kale B, Nikam L, Kulkarni M, Thombre D, Gade W, Gosavi S (2014) Self assembly of nanostructured hexagonal cobalt dendrites: an efficient anti-coliform agent. RSC Adv 4:4586–4595

    Article  CAS  Google Scholar 

  • Patil S, Patil R, Kale S, Tamboli M, Ambekar J, Gade W, Kolekar S, Kale B (2014) Nanostructured microspheres of silver @ zinc oxide: an excellent impeder of bacterial growth and biofilm. J Nanoparticle Res 16:2717

    Article  Google Scholar 

  • Patil R, Gholap H, Warule S, Banpurkar A, Kulkarni G, Gade W (2015) Quantum dots conjugated zinc oxide nanosheets: impeder of microbial growth and biofilm. Appl Surf Sci 326:73–81

    Article  CAS  Google Scholar 

  • Pelgrift R, Friedman A (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    Article  CAS  PubMed  Google Scholar 

  • Prokopovich S, Pratten J, Parkin I, Wilson M (2011) Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci 10:712–720

    Article  PubMed  Google Scholar 

  • Radzig M, Nadtochenko V, Koksharova O, Kiwi J, Lipasova V, Khmel I (2013) Antibacterial effects of silver nano-particles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B 102:300–306

    Article  CAS  Google Scholar 

  • Ronen A, Semiat R, Dosoretz C (2013) Impact of ZnO embedded feed spacer on biofilm development in membrane systems. Water Res 47:6628–6638

    Article  CAS  PubMed  Google Scholar 

  • Sahi S, Chen W (2013) Luminescence enhancement in CeF3/ZnO nanocomposites for radiation detection. Radiat Meas 59:139–143

    Article  CAS  Google Scholar 

  • Salazar R, Delamoreanu A, Lévy Clément C, Ivanova V (2011) ZnO/CdTe and ZnO/CdS core shell nanowire arrays for extremely thin absorber solar cells. Energy Procedia 10:122–127

    Article  CAS  Google Scholar 

  • Shirakata S (2013) Photoluminescence characterization of photovoltaic effect in ZnO/CdS/Cu (In, Ga) Se2 heterostructure. Phys Status Solid A 210:1322–1327

    Article  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann L, Bakhori S, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(2):219–242. doi:10.1007/s40820-015-0040-x

  • Song Y, Cao X, Guo Y, Chen P, Zhao Q, Shen G (2009) Fabrication of mesoporous CdTe/ZnO@SiO2 core/shell nanostructures with tunable dual emission and ultrasensitive fluorescence response to metal ions. Chem Mater 21:68–77

    Article  CAS  Google Scholar 

  • Sriramulu D (2013) Evolution and impact of bacterial drug resistance in the context of cystic fibrosis disease and nosocomial settings. Microbiol Insights 6:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart P, Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Stoimenov P, Klinger R, Marchin G, Klabunde K (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sun F, Qu F, Ling Y, Mao P, Xia P, Chen H, Zhou D (2013) Biofilm-associated infections. Future Microbiol 8:877–886

    Article  CAS  PubMed  Google Scholar 

  • Taglietti A, Arciola C, D’Agostino A, Dacarro G, Montanaro L, Campoccia D, Cucca L, Vercellino M, Poggi A, Pallavicini P (2014) Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials 35:1779–1788

    Article  CAS  PubMed  Google Scholar 

  • Tamaki Y, Hara K, Katoh R, Tachiya M, Furub A (2009) Femtosecond visible-to-IR spectroscopy of TiO2 nanocrystalline films: elucidation of the electron mobility before deep trapping. J Phys Chem C 113:11741–11746

    Article  CAS  Google Scholar 

  • Tamez M, Nicolas Y, Oliviér C, Toupance T, Servant L, Müller M, Kleebe H, Ziegler J, Jaegermann (2012) Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg Chem 51:7764–7773

    Article  Google Scholar 

  • Van Houdt R, Michiels C (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131

    Article  PubMed  Google Scholar 

  • Wagh M, Patil R, Kale S, Thombre D, Gade W, Kulkarni M, Kale B (2013) Evaluation of anti-quorum sensing activity of silver nanowires. Appl Microbiol Biotechnol 97:3593–3601

    Article  CAS  Google Scholar 

  • Wang R, Wang X, Xin J (2010) Advanced visible-light-driven self-cleaning Cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl Mater Inter 2:82–85

    Article  CAS  Google Scholar 

  • Wang Y, Fang H-B, Zheng Y-Z, Ye R, Tao X, Chenb J-F (2015) Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity. Nanoscale 7:19118–11912

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Siu G, Fu C, Ong H (2001) Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl Phys Lett 78:2285

    Article  CAS  Google Scholar 

  • Xu H, Qu F, Xu H, Lai W, Wang Y, Aguilar Z, Wei H (2012) Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli. Biometals 25:45–53

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Yan W, Zhang Q, Shen S, Ding S (2013) One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production. Nanoscale 5:12432–12439

    Article  CAS  PubMed  Google Scholar 

  • Yebra D, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  • Yu C, Yang K, Xie Y, Fan Q, Yu J, Shua Q, Wang C (2013) Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5:2142–2151

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Luo Q, Chen H, Yu X, Kuang D, Su C (2012) CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells. Chem Phys Chem 13:1435–1439

    CAS  PubMed  Google Scholar 

  • Zhou J, Zhao F, Wang Y, Zhang Y, Yang L (2007) Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. J Luminenescence 122:195–197

    Article  Google Scholar 

Download references

Acknowledgments

Haribhau Gholap acknowledges research funding from the Board of College and University Development (BCUD), Savitribai Phule Pune University, and Fergusson College, Pune, India, for the research facility. Rajendra Patil acknowledges UPE-II phase grant and Departmental Research and Development Grant, Department of Biotechnology, Savitribai Phule Pune University, for the financial support. We are thankful to Dr. Satishchandra Ogale (Scientist G), National Chemical Laboratory and Dr. Kale Bharat (Scientist F), C-MET, Pune, for the help and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haribhau Gholap or Rajendra Patil.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholap, H., Warule, S., Sangshetti, J. et al. Hierarchical nanostructures of Au@ZnO: antibacterial and antibiofilm agent. Appl Microbiol Biotechnol 100, 5849–5858 (2016). https://doi.org/10.1007/s00253-016-7391-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7391-1

Keywords

Navigation