Skip to main content
Log in

Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the anti-Candida activity of ten essential oils (EOs) and to evaluate their potential synergism with conventional drugs. The effect on secreted aspartic protease (SAP) activity and the mechanism of action were also explored. The antifungal properties of essential oils were investigated using standard micro-broth dilution assay. Only Cinnamomum verum, Thymus capitatus, Syzygium aromaticum, and Pelargonium graveolens exhibited a broad spectrum of activity against a variety of pathogenic Candida strains. Chemical composition of active essential oils was performed by gas chromatography-mass spectrometry (GC-MS). Synergistic effect was observed with the combinations C. verum/fluconazole and P. graveolens/fluconazole, with FIC value 0.37. Investigation of the mechanism of action revealed that C. verum EO reduced the quantity of ergosterol to 83%. A total inhibition was observed for the combination C. verum/fluconazole. However, P. graveolens EO may disturb the permeability barrier of the fungal cell wall. An increase of MIC values of P. graveolens EO and the combination with fluconazole was observed with osmoprotectants (sorbitol and PEG6000). Furthermore, the combination with fluconazole may affect ergosterol biosynthesis and disturb fatty acid homeostasis in C. albicans cells as the quantity of ergosterol and oleic acid was reduced to 52.33 and 72%, respectively. The combination of P. graveolens and C. verum EOs with fluconazole inhibited 78.31 and 64.72% SAP activity, respectively. To our knowledge, this is the first report underlying the mechanism of action and the inhibitory effect of SAP activity of essential oils in synergy with fluconazole. Naturally occurring phytochemicals C. verum and P. graveolens could be effective candidate to enhance the efficacy of fluconazole-based therapy of C. albicans infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves CT, Ferreira IC, Barros L, Silva S, Azeredo J, Henriques M (2014) Antifungal activity of phenolic compounds identified in flowers from north eastern Portugal against Candida species. Future Microbiol 9:139–146

    Article  CAS  PubMed  Google Scholar 

  • Azevedo MM, Almeida CA, Chaves FC, Rodrigues IA, Bizzo HR, Alviano CS, Alviano DS (2016) 7-hydroxycalamenene effects on secreted aspartic proteases activity and biofilm formation of Candida spp. Pharmacogn Mag 12:36–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Barreto HM, Filho ECS, Lima EO, Coutinho HDM, Morais-Braga MFB, Tavares CCA, Tintino SR, Rego JV (2014) Chemical composition and possible use as adjuvant of the antibiotic therapy of the essential oil of Rosmarinus officinalis L. Ind Crop Prod 59:290–294

    Article  CAS  Google Scholar 

  • Costa CR, Jesuino RSA, Lemos JA, Fernandes OFL, Souza LKH, Passos XS, Silva MRR (2010) Effects of antifungal agents in sap activity of Candida albicans isolates. Mycopathologia 169:91–98

    Article  PubMed  Google Scholar 

  • Council of Europe (2007) European directorate for the quality of medicines, 6th edn. European Pharmacopoeia, Strasbourg

  • Cui J, Ren B, Tong Y, Dai H, Zhang L (2015) Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 6:362–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Castro RD, de Souza TMPA, Bezerra LMD, Ferreira GL, Costa EM, Cavalcanti AL (2015) Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study. BMC Complement Altern Med 15:417–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo EH, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Dias Filho BP (2010) Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Res Microbiol 161:534–540

    Article  PubMed  Google Scholar 

  • Essid R, Rahali FZ, Msaada K, Sghair I, Hammami M, Bouratbine A, Aoun K, Limam F (2015) Antileishmanial and cytotoxic potential of essential oils from medicinal plants in northern Tunisia. Ind Crop Prod 77:795–802

    Article  CAS  Google Scholar 

  • Grieco P, Carotenuto A, Auriemma L, Limatola A, Di Maro S, Merlino F, Mangoni ML, Luca V, Di Grazia A, Campiglia P, Gomez-Monterrey I, Novellino E, Catania A (2013) Novel α-MSH peptide analogues with broad spectrum antimicrobial activity. PLoS One 8:1–8

    Article  Google Scholar 

  • Hua H, Xing F, Selvaraj JN, Wang Y, Zhao Y, Zhou L, Liu X, Liu Y (2014) Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin A production. PLoS One 9:1–10

    Google Scholar 

  • Ilić BS, Kocic BD, Ciric VM, Ćvetković OG, Miladinović DL (2014) An in vitro synergistic interaction of combinations of Thymus glabrescens essential oil and its main constituents with chloramphenicol. Sci World J 2014:1–12

    Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    Article  CAS  PubMed  Google Scholar 

  • Khan MSA, Ahmed I (2011) Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl Microbiol Biotechnol 90:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Khan MSA, Malik A, Ahmad I (2012) Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Med Mycol 50:33–42

    Article  CAS  PubMed  Google Scholar 

  • Khan MSA, Ahmed I, Cameotra SS (2013) Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express 3:1–16

    Article  CAS  Google Scholar 

  • Khan MSA, Ahmed I, Cameotra SS, Botha F (2014) Sub-MICs of Carum copticum and Thymus vulgaris influence virulence factors and biofilm formation in Candida spp. BMC Complement Altern Med 14:1–14

    Article  Google Scholar 

  • Kuriyama T, Williams DW, Lewis MAO (2003) In vitro secreted aspartyl proteinase activity of Candida albicans isolated from oral diseases and healthy oral cavities. Oral Microbiol Immunol 18:405–407

    Article  CAS  PubMed  Google Scholar 

  • Leite MCA, Bezerra APB, de Sousa JP, Guerra FQS, Lima EO (2014) Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid Based Complement Alternat Med 2014:1–9

    Article  Google Scholar 

  • Li XC, Jacob MR, Pasco DS, El Sohly HN, Nimrod AC, Walker LA, Clark AM (2001) Phenolic compounds from Miconia myriantha inhibiting Candida aspartic proteases. J Nat Prod 64:1282–1285

    Article  CAS  PubMed  Google Scholar 

  • Li WR, Shi QS, Dai HQ, Liang Q, Xie XB, Huang XM, Zhao GZ, Zhang LX (2016) Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci Rep 6:1–9

    Article  Google Scholar 

  • Lopez-Romero JC, González-Ríos H, Borges A, Simões M (2015) Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid Based Complement Alternat Med 2015:1–9

    Article  Google Scholar 

  • Low CY, Rotstein C (2011) Emerging fungal infections in immunocompromised patients. F1000 Med Rep 3:1–8

    Article  Google Scholar 

  • Luca V, Stringaro A, Colone M, Pini A, Mangoni ML (2013) Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci 70:2773–2786

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ML, Rinaldi AC, Di Giulio A, Mignogna G, Bozzi A, Barra D, Simmaco M (2000) Structure–function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem 267:1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ML, Epand RF, Rosenfeld Y, Peleg A, Barra D, Epand RM, Shai Y (2008) Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J Biol Chem 283:22907–22917

    Article  CAS  PubMed  Google Scholar 

  • Mertas A, Garbusinska A, Szliszka E, Jureczko A, Kowalska M, Król W (2015) The influence of tea tree oil (Melaleuca alternifolia) on fluconazole activity against fluconazole-resistant Candida albicans strains. Biomed Res Int 2015:1–9

    Article  Google Scholar 

  • Miron D, Battisti F, Silva FK, Lana AD, Pippi B, Casanova B, Gnoatto S, Fuentefria A, Mayorga P, Schapoval EES (2014) Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Rev Bras Farmacogn 24:660–667

    Article  CAS  Google Scholar 

  • Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451–1474

    Article  PubMed  PubMed Central  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the checkerboard puts between them. J Antimicrob Chemother 52:1

    Article  CAS  PubMed  Google Scholar 

  • Onyewu C, Blankenship JR, Del Poeta M, Heitman J (2003) Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 47:956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE (2006) Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med 34:511–522

    Article  CAS  PubMed  Google Scholar 

  • Orhan G, Bayram A, Zer Y, Balci I (2005) Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J Clin Microbiol 43:140–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmeira-de-Oliveira A, Salgueiro L, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Pina-Vaz C, Queiroz JA, Rodrigues AG (2009) Anti-Candida activity of essential oils. Mini Rev Med Chem 9:1292–1305

    Article  CAS  PubMed  Google Scholar 

  • Pichová I, Pavlíčková L, Dostál J, Dolejsí E, Hrusková-Heidingsfeldová O, Weber J, Ruml T, Soucek M (2001) Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae. Eur J Biochem 268:2669–2677

    Article  PubMed  Google Scholar 

  • Pires RH, Montanari LB, Martins CH, Zaia JE, Almeida AM, Matsumoto MT, Mendes-Giannini MJ (2011) Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia 172:453–464

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar K, Kumar LS, Rajendran S, Chandrasekaran M, Bhaskar K, Sajit Khan AK (2008) Antifungal activity of plant extracts against Candida species from oral lesions. Indian J Pharm Sci 70:801–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhnke M (2014) Antifungal stewardship in invasive Candida infections. Clin Microbiol Infect 20:11–18

    Article  PubMed  Google Scholar 

  • Sanglard D, Coste A, Ferrari S (2009) Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 9:1029–1050

    Article  CAS  PubMed  Google Scholar 

  • Sharma Y, Khan LA, Manzoor N (2016) Anti-Candida activity of geraniol involves disruption of cell membrane integrity and function. J Mycol Med 26:244–254

    Article  CAS  PubMed  Google Scholar 

  • Souza CM, Pereira JSA, Moraes TS, Damasceno JL, Mendes AS, Dias HJ, Stefani R, Tavares DC, Martins CH, Crotti AE, Mendes-Giannini MJ, Pires RH (2016) Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells. Med Mycol 54:515–523

    Article  PubMed  Google Scholar 

  • Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J (2007) Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5:418–430

    Article  CAS  PubMed  Google Scholar 

  • Tabbene O, Di Grazia A, Azaiez S, Ben Slimene I, Elkahoui S, Alfeddy MN, Casciaro B, Luca V, Limam F, Mangoni ML (2015) Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenic Candida species. FEMS Yeast Res 15:fov022

    Article  PubMed  Google Scholar 

  • Teodoro GR, Ellepola K, Seneviratne CJ, Koga-Ito CY (2015) Potential use of phenolic acids as anti-Candida agents: a review. Front Microbiol 6:1–11

    Article  Google Scholar 

  • Uccelletti D, Zanni E, Marcellini L, Palleschi C, Barra D, Mangoni ML (2010) Anti-Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: a plausible mode of action in vitro and in vivo. Antimicrob Agents Chemother 54:3853–3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale RG, Afeltra J, Dannaoui E (2005) Antifungal combinations. In: Ernst EJ, Rogers PD (eds) Methods in molecular medicine. Antifungal agents: methods and protocols. Humana Press Inc, Clifton, pp 143–152

    Chapter  Google Scholar 

  • Xu T, Tripathi SK, Feng Q, Lorenz MC, Wright MA, Jacob MR, Mask MM, Baerson SR, Li XC, Clark AM, Agarwal AK (2012) A potent plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis. Antimicrob Agents Chemother 56:2894–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zore GB, Thakre AD, Rathod V, Karuppayil SM (2011) Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Mycoses 54:99–109

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Abdelrazzek Smaoui for plant identification. This work was supported by grants from the Ministry of Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Tabbene.

Ethics declarations

Ethical approval

This publication does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essid, R., Hammami, M., Gharbi, D. et al. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains . Appl Microbiol Biotechnol 101, 6993–7006 (2017). https://doi.org/10.1007/s00253-017-8442-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8442-y

Keywords

Navigation