Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 2/2007

01.02.2007 | Editorial

The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging

verfasst von: Freek Beekman, Frans van der Have

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

Today the majority of clinical molecular imaging procedures are carried out with single-photon emitters and gamma cameras, in planar mode and single-photon emission computed tomography (SPECT) mode. Thanks to the development of advanced multi-pinhole collimation technologies, SPECT imaging of small experimental animals is rapidly gaining in popularity. Whereas resolutions in routine clinical SPECT are typically larger than 1 cm (corresponding to >1,000 μl), it has recently proved possible to obtain spatial resolutions of about 0.35 mm (≈0.04 μl) in the mouse. Meanwhile, SPECT systems that promise an even better performance are under construction. The new systems are able to monitor functions in even smaller structures of the mouse than was possible with dedicated small animal positron emission tomography (≈1 mm resolution, corresponding to 1 μl). This paper provides a brief history of image formation with pinholes and explains the principles of pinhole imaging and pinhole tomography and the basics of modern image reconstruction methods required for such systems. Some recently introduced ultra-high-resolution small animal SPECT instruments are discussed and new avenues for improving system performance are explored. This may lead to many completely new biomedical applications. We also demonstrate that clinical SPECT systems with focussing pinhole gamma cameras will be able to produce images with a resolution that may become superior to that of PET for major clinical applications. A design study of a cardiac pinhole SPECT system indicates that the heart can be imaged an order of magnitude faster or with much more detail than is possible with currently used parallel-hole SPECT (e.g. 3–4 mm instead of ≈8 mm system resolution).
Literatur
1.
Zurück zum Zitat King MA, Pretorius PH, Farncombe T, Beekman FJ. Introduction to the physics of molecular imaging with radioactive tracers in small animals. J Cell Biochem Suppl 2002;39:221–30.PubMedCrossRef King MA, Pretorius PH, Farncombe T, Beekman FJ. Introduction to the physics of molecular imaging with radioactive tracers in small animals. J Cell Biochem Suppl 2002;39:221–30.PubMedCrossRef
2.
Zurück zum Zitat Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 2005;50(22):R45–61.PubMedCrossRef Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol 2005;50(22):R45–61.PubMedCrossRef
3.
Zurück zum Zitat Meikle SR, Beekman FJ, Rose SE. Complementary molecular imaging technologies: high resolution SPECT, PET and MRI (invited review). Drug Discov Today Technol 2006;3(2):187–94 Meikle SR, Beekman FJ, Rose SE. Complementary molecular imaging technologies: high resolution SPECT, PET and MRI (invited review). Drug Discov Today Technol 2006;3(2):187–94
4.
Zurück zum Zitat Land MF. The spatial resolution of the pinhole eyes of giant clams (Tridacna maxima). Proc Biol Sci 2003;270(1511):185–8.PubMedCrossRef Land MF. The spatial resolution of the pinhole eyes of giant clams (Tridacna maxima). Proc Biol Sci 2003;270(1511):185–8.PubMedCrossRef
5.
Zurück zum Zitat Hammond JH. The camera obscura, a chronicle. Bristol: Adam Hilger Ltd; 1981. Hammond JH. The camera obscura, a chronicle. Bristol: Adam Hilger Ltd; 1981.
6.
7.
Zurück zum Zitat Copeland DE, Benjamin EW. Pinhole camera for gamma-ray sources. Nucleonics 1949;5:45–9. Copeland DE, Benjamin EW. Pinhole camera for gamma-ray sources. Nucleonics 1949;5:45–9.
8.
Zurück zum Zitat Anger HO. Scintillation camera. Rev Sci Instr 1958;29:27–33. Anger HO. Scintillation camera. Rev Sci Instr 1958;29:27–33.
9.
Zurück zum Zitat Mallard JR, Myers MJ. The performance of a gamma camera for the visualization of radioactive isotopes in vivo. Phys Med Biol 1963;8:165–82.PubMedCrossRef Mallard JR, Myers MJ. The performance of a gamma camera for the visualization of radioactive isotopes in vivo. Phys Med Biol 1963;8:165–82.PubMedCrossRef
10.
Zurück zum Zitat Wanet PM, Sand A, Abramovici J. Physical and clinical evaluation of high-resolution thyroid pinhole tomography. J Nucl Med 1996;37:2017–20.PubMed Wanet PM, Sand A, Abramovici J. Physical and clinical evaluation of high-resolution thyroid pinhole tomography. J Nucl Med 1996;37:2017–20.PubMed
11.
Zurück zum Zitat Wouters A, Simon KM, Hirschberg JG. Direct method of decoding multiple images. Appl Opt 1973;12:1871. Wouters A, Simon KM, Hirschberg JG. Direct method of decoding multiple images. Appl Opt 1973;12:1871.
12.
Zurück zum Zitat Chang LT, Kaplan SN, Macdonald B, Perez-Mendez V, Shiraishi L. A method of tomographic imaging using a multiple pinhole coded aperture. J Nucl Med 1974;15:1063–5.PubMed Chang LT, Kaplan SN, Macdonald B, Perez-Mendez V, Shiraishi L. A method of tomographic imaging using a multiple pinhole coded aperture. J Nucl Med 1974;15:1063–5.PubMed
13.
Zurück zum Zitat Seret A, Defrise M, Blocklet D. 180° Pinhole SPET with a tilted detector and OS-EM reconstruction: phantom studies and potential clinical applications. Eur J Nucl Med Mol Imaging 2001;28(12):1836–41.CrossRef Seret A, Defrise M, Blocklet D. 180° Pinhole SPET with a tilted detector and OS-EM reconstruction: phantom studies and potential clinical applications. Eur J Nucl Med Mol Imaging 2001;28(12):1836–41.CrossRef
14.
Zurück zum Zitat Seret A, Flérès D, Firket O, Defrise M. Body contour 180° pinhole SPET with or without tilted detector: a phantom study. Eur J Nucl Med Mol Imaging 2003;30(9):1205–10.PubMedCrossRef Seret A, Flérès D, Firket O, Defrise M. Body contour 180° pinhole SPET with or without tilted detector: a phantom study. Eur J Nucl Med Mol Imaging 2003;30(9):1205–10.PubMedCrossRef
15.
Zurück zum Zitat Maillefert JF, Toubeau M, Piroth C, Piroth L, Brunotte F, Tavernier C. Bone scintigraphy equipped with a pinhole collimator for diagnosis of avascular necrosis of the femoral head. Clin Rheumatol 1997;16(4):372–7.PubMedCrossRef Maillefert JF, Toubeau M, Piroth C, Piroth L, Brunotte F, Tavernier C. Bone scintigraphy equipped with a pinhole collimator for diagnosis of avascular necrosis of the femoral head. Clin Rheumatol 1997;16(4):372–7.PubMedCrossRef
16.
Zurück zum Zitat Pak Y-H, Bahk Y-W. Combined scintigraphic and radiographic diagnosis of bone and joint diseases. Berlin Heidelberg New York: Springer; 2004. Pak Y-H, Bahk Y-W. Combined scintigraphic and radiographic diagnosis of bone and joint diseases. Berlin Heidelberg New York: Springer; 2004.
17.
Zurück zum Zitat Spanu A, Falchi A, Manca A, Marongiu P, Cossu A, Pisu N, et al. The usefulness of neck pinhole SPECT as a complementary tool to planar scintigraphy in primary and secondary hyperparathyroidism. J Nucl Med 2004;45(1):40–8.PubMed Spanu A, Falchi A, Manca A, Marongiu P, Cossu A, Pisu N, et al. The usefulness of neck pinhole SPECT as a complementary tool to planar scintigraphy in primary and secondary hyperparathyroidism. J Nucl Med 2004;45(1):40–8.PubMed
18.
Zurück zum Zitat Vogel RA, Kirch D, LeFree M, Steele P. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med 1978;19:648–54.PubMed Vogel RA, Kirch D, LeFree M, Steele P. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med 1978;19:648–54.PubMed
19.
Zurück zum Zitat Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution small-field-of-view SPECT. Phys Med Biol 1994;39:425–37.PubMedCrossRef Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution small-field-of-view SPECT. Phys Med Biol 1994;39:425–37.PubMedCrossRef
20.
Zurück zum Zitat Beekman FJ, McElroy DP, Berger F, Gambhir SS, Hoffman EJ, Cherry SR. Towards in vivo nuclear microscopy: I-125 imaging in mice using micro-pinholes. Eur J Nucl Med Mol Imaging 2002;29(7):933–8.PubMedCrossRef Beekman FJ, McElroy DP, Berger F, Gambhir SS, Hoffman EJ, Cherry SR. Towards in vivo nuclear microscopy: I-125 imaging in mice using micro-pinholes. Eur J Nucl Med Mol Imaging 2002;29(7):933–8.PubMedCrossRef
21.
Zurück zum Zitat Metzler SD, Bowsher JE, Greer KL, Jaszczak RJ. Analytic determination of the pinhole collimator’s point-spread function and RMS resolution with penetration. IEEE Trans Med Imaging 2002;21(8):878–87.PubMedCrossRef Metzler SD, Bowsher JE, Greer KL, Jaszczak RJ. Analytic determination of the pinhole collimator’s point-spread function and RMS resolution with penetration. IEEE Trans Med Imaging 2002;21(8):878–87.PubMedCrossRef
22.
Zurück zum Zitat Accorsi R, Metzler SD. Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans Med Imaging 2004;23(6):750–63.PubMedCrossRef Accorsi R, Metzler SD. Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans Med Imaging 2004;23(6):750–63.PubMedCrossRef
23.
Zurück zum Zitat Palmer J, Wollmer P. Pinhole emission computed tomography: method and experimental evaluation. Phys Med Biol 1990;35:339–50.PubMedCrossRef Palmer J, Wollmer P. Pinhole emission computed tomography: method and experimental evaluation. Phys Med Biol 1990;35:339–50.PubMedCrossRef
24.
Zurück zum Zitat Habraken JBA, de Bruin K, Shehata M, Booij J, Bennink R, van Eck Smit BL, et al. Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med 2001;42:1863–9.PubMed Habraken JBA, de Bruin K, Shehata M, Booij J, Bennink R, van Eck Smit BL, et al. Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med 2001;42:1863–9.PubMed
25.
Zurück zum Zitat Wu MC, Tang HR, Gao DW, Ido A, O’Connell JW, Hasegawa BH, et al. ECG gated pinhole SPECT in mice with millimeter resolution. IEEE Trans Nucl Sci 2000;47:1218–27.CrossRef Wu MC, Tang HR, Gao DW, Ido A, O’Connell JW, Hasegawa BH, et al. ECG gated pinhole SPECT in mice with millimeter resolution. IEEE Trans Nucl Sci 2000;47:1218–27.CrossRef
26.
Zurück zum Zitat McElroy DP, MacDonald LR, Beekman FJ, Wang YC, Patt BE, Iwanczyk JS, et al. Performance evaluation of A-SPECT: a high resolution desktop pinhole SPECT system for imaging small animals. IEEE Trans Nucl Sci 2002;49:2139–47.CrossRef McElroy DP, MacDonald LR, Beekman FJ, Wang YC, Patt BE, Iwanczyk JS, et al. Performance evaluation of A-SPECT: a high resolution desktop pinhole SPECT system for imaging small animals. IEEE Trans Nucl Sci 2002;49:2139–47.CrossRef
27.
Zurück zum Zitat Acton PD, Choi SR, Plossl K, Kung HF. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002;29:691–9.PubMedCrossRef Acton PD, Choi SR, Plossl K, Kung HF. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002;29:691–9.PubMedCrossRef
28.
Zurück zum Zitat Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, et al. Ultra-high-resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995;26:2282–9. Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, et al. Ultra-high-resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995;26:2282–9.
29.
Zurück zum Zitat Moore SC, Zimmerman RE, Mahmood A, Mellen R, Lim CB. A triple-detector multi-pinhole system for SPECT imaging of rodents. J Nucl Med 2005;45(5):97P. Moore SC, Zimmerman RE, Mahmood A, Mellen R, Lim CB. A triple-detector multi-pinhole system for SPECT imaging of rodents. J Nucl Med 2005;45(5):97P.
30.
Zurück zum Zitat Schramm NU, Ebel G, Engeland U, Schurrat T, Béhé M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 2003;50(3):315–20.CrossRef Schramm NU, Ebel G, Engeland U, Schurrat T, Béhé M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 2003;50(3):315–20.CrossRef
31.
Zurück zum Zitat Meikle SR, Fulton RR, Eberl S, Dahlbom M, Wong KP, Fulham MJ. An investigation of coded aperture imaging for small animal SPECT. IEEE Trans Nucl Sci 2001;48:816–21.CrossRef Meikle SR, Fulton RR, Eberl S, Dahlbom M, Wong KP, Fulham MJ. An investigation of coded aperture imaging for small animal SPECT. IEEE Trans Nucl Sci 2001;48:816–21.CrossRef
32.
Zurück zum Zitat Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am 1984;A1:612–9.CrossRef Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am 1984;A1:612–9.CrossRef
33.
Zurück zum Zitat Lange K, Carson REM. Reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16.PubMed Lange K, Carson REM. Reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16.PubMed
34.
Zurück zum Zitat Furenlid LR, Chen Y, Kim H. SPECT imager design and data acquisition systems. In: Kupinski MA, Barrett HH, editors. Small animal SPECT imaging. New York: Springer Science+Business Media Inc.; 2005, p.115–38.CrossRef Furenlid LR, Chen Y, Kim H. SPECT imager design and data acquisition systems. In: Kupinski MA, Barrett HH, editors. Small animal SPECT imaging. New York: Springer Science+Business Media Inc.; 2005, p.115–38.CrossRef
35.
Zurück zum Zitat Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJA, van Rijk PP, Burbach JPH, et al. U-SPECT-I: a novel system for sub-millimeter resolution tomography of radiolabeled molecules in mice. J Nucl Med 2005;46:1194–200.PubMed Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJA, van Rijk PP, Burbach JPH, et al. U-SPECT-I: a novel system for sub-millimeter resolution tomography of radiolabeled molecules in mice. J Nucl Med 2005;46:1194–200.PubMed
36.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef
37.
Zurück zum Zitat Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.PubMed Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.PubMed
38.
Zurück zum Zitat Lalush DS, Wernick MN. Iterative Image reconstruction. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of PET and SPECT. San Diego: Academic Press; 2004. Lalush DS, Wernick MN. Iterative Image reconstruction. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of PET and SPECT. San Diego: Academic Press; 2004.
39.
Zurück zum Zitat Barrett HH, Swindell W. Radiological imaging. The theory of image formation, detection, and processing. New York: Academic Press; 1981. Barrett HH, Swindell W. Radiological imaging. The theory of image formation, detection, and processing. New York: Academic Press; 1981.
40.
Zurück zum Zitat Rogulski MM, Barber HB, Barrett HH, Shoemaker RL, Woolfenden JM. Ultra-high-resolution brain SPECT: simulation results. IEEE Trans Nucl Sci 1993;40:1123–9.CrossRef Rogulski MM, Barber HB, Barrett HH, Shoemaker RL, Woolfenden JM. Ultra-high-resolution brain SPECT: simulation results. IEEE Trans Nucl Sci 1993;40:1123–9.CrossRef
41.
Zurück zum Zitat Rowe RK, Aarsvold JN, Barrett HH, Chen JC, Klein WP, Moore BA, et al. A stationary hemispherical SPECT imager for three-dimensional brain imaging. J Nucl Med 1993;34:474–80.PubMed Rowe RK, Aarsvold JN, Barrett HH, Chen JC, Klein WP, Moore BA, et al. A stationary hemispherical SPECT imager for three-dimensional brain imaging. J Nucl Med 1993;34:474–80.PubMed
42.
Zurück zum Zitat Patton DD, Barrett HH, Chen JC, Klein WP, Pang I, Richards D, et al. FASTSPECT—a 4-dimensional brain imager. J Nucl Med 1994;35(5):P93, Suppl S. Patton DD, Barrett HH, Chen JC, Klein WP, Pang I, Richards D, et al. FASTSPECT—a 4-dimensional brain imager. J Nucl Med 1994;35(5):P93, Suppl S.
43.
Zurück zum Zitat Furenlid LR, Wilson DW, Chen Y, Kim H, Pietrski PJ, Crawford MJ, et al. FastSPECT II: a second-generation high-resolution dynamic SPECT imager. IEEE Trans Nucl Sci 2004;51:631–5.CrossRef Furenlid LR, Wilson DW, Chen Y, Kim H, Pietrski PJ, Crawford MJ, et al. FastSPECT II: a second-generation high-resolution dynamic SPECT imager. IEEE Trans Nucl Sci 2004;51:631–5.CrossRef
44.
Zurück zum Zitat Kastis GK, Barber HB, Barrett HH, Gifford HC, Pang IW, Patton DD, et al. High resolution SPECT imager for three-dimensional imaging of small animals [abstract]. J Nucl Med 1998;39(5):25 Suppl S 9P. Kastis GK, Barber HB, Barrett HH, Gifford HC, Pang IW, Patton DD, et al. High resolution SPECT imager for three-dimensional imaging of small animals [abstract]. J Nucl Med 1998;39(5):25 Suppl S 9P.
45.
Zurück zum Zitat Liu Z, Kastis GA, Stevenson GD, Barrett HH, Furenlid LR, Kupinski MA, et al. Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. J Nucl Med 2002;43(7):933–9.PubMed Liu Z, Kastis GA, Stevenson GD, Barrett HH, Furenlid LR, Kupinski MA, et al. Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. J Nucl Med 2002;43(7):933–9.PubMed
46.
Zurück zum Zitat Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579–92.PubMedCrossRef Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579–92.PubMedCrossRef
47.
Zurück zum Zitat van der Have F, Vastenhouw B, Rentmeester MCM, Beekman FJ. System calibration and statistical image reconstruction for sub-mm stationary pinhole SPECT. Conference record of the 2005 Nuclear Science Symposium and Medical Imaging Conference, Puerto Rico, M11-291, 2005. van der Have F, Vastenhouw B, Rentmeester MCM, Beekman FJ. System calibration and statistical image reconstruction for sub-mm stationary pinhole SPECT. Conference record of the 2005 Nuclear Science Symposium and Medical Imaging Conference, Puerto Rico, M11-291, 2005.
48.
Zurück zum Zitat Vastenhouw B, Beekman FJ. Sub-mm total body mouse imaging with U-SPECT-I. J Nucl Med 2007 (in press). Vastenhouw B, Beekman FJ. Sub-mm total body mouse imaging with U-SPECT-I. J Nucl Med 2007 (in press).
49.
Zurück zum Zitat Kupinski MA, Barrett HH, editors. Small-animal SPECT imaging. New York: Springer Science+Business Media Inc., 2005. Kupinski MA, Barrett HH, editors. Small-animal SPECT imaging. New York: Springer Science+Business Media Inc., 2005.
50.
Zurück zum Zitat Zeniya T, Watabe H, Aoi T, Kyeong MK, Teramoto N, Hayashi T, et al. A new reconstruction strategy for image improvement in pinhole SPECT. Eur J Nucl Med Mol Imaging 2004;31(8):1166–72.PubMedCrossRef Zeniya T, Watabe H, Aoi T, Kyeong MK, Teramoto N, Hayashi T, et al. A new reconstruction strategy for image improvement in pinhole SPECT. Eur J Nucl Med Mol Imaging 2004;31(8):1166–72.PubMedCrossRef
51.
52.
Zurück zum Zitat Metzler SD, Greer KL, Jaszczak RJ. Determination of mechanical and electronic shifts for pinhole SPECT using a single point source. IEEE Trans Med Imaging 2005;24(3):361–70.PubMedCrossRef Metzler SD, Greer KL, Jaszczak RJ. Determination of mechanical and electronic shifts for pinhole SPECT using a single point source. IEEE Trans Med Imaging 2005;24(3):361–70.PubMedCrossRef
53.
Zurück zum Zitat Rentmeester MCM, van der Have F, Beekman FJ. Continuous model of multi-pinhole SPECT devices. Conference Record of the 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference, Puerto Rico. IEEE 2005;M03–283. Rentmeester MCM, van der Have F, Beekman FJ. Continuous model of multi-pinhole SPECT devices. Conference Record of the 2005 IEEE Nuclear Science Symposium and Medical Imaging Conference, Puerto Rico. IEEE 2005;M03–283.
54.
Zurück zum Zitat Cao ZX, Bal G, Accorsi R, Acton PD. Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—a simulation study. Phys Med Biol 2005;50(19):4609–24.PubMedCrossRef Cao ZX, Bal G, Accorsi R, Acton PD. Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—a simulation study. Phys Med Biol 2005;50(19):4609–24.PubMedCrossRef
55.
Zurück zum Zitat Barber HB. Applications of semiconductor detectors to nuclear medicine. Nucl Instrum Methods Phys Res A 1999;436:102–10.CrossRef Barber HB. Applications of semiconductor detectors to nuclear medicine. Nucl Instrum Methods Phys Res A 1999;436:102–10.CrossRef
56.
Zurück zum Zitat Fiorini C, Longoni A, Perotti F, Labanti C, Rossi E, Lechner P, et al. A monolithic array of silicon drift detectors coupled to a single scintillator for gamma-ray imaging with sub-millimeter position resolution. Nucl Instrum Methods Phys Res A 2003;512:265–71.CrossRef Fiorini C, Longoni A, Perotti F, Labanti C, Rossi E, Lechner P, et al. A monolithic array of silicon drift detectors coupled to a single scintillator for gamma-ray imaging with sub-millimeter position resolution. Nucl Instrum Methods Phys Res A 2003;512:265–71.CrossRef
57.
Zurück zum Zitat He Z, Li W, Knoll GF, Wehe DK, Berry J, Stahle CM. 3-D position sensitive CdZnTe gamma-ray spectrometers. Nucl Instrum Methods Phys Res A 1999;A422:173–8.CrossRef He Z, Li W, Knoll GF, Wehe DK, Berry J, Stahle CM. 3-D position sensitive CdZnTe gamma-ray spectrometers. Nucl Instrum Methods Phys Res A 1999;A422:173–8.CrossRef
58.
Zurück zum Zitat Lees JE, Fraser GW, Keay A, Bassford D, Ott R, Ryder W. The high resolution gamma imager (HRGI): a CCD based camera for medical imaging. Nucl Instrum Methods Phys Res A 2003;513(1–2):23–6.CrossRef Lees JE, Fraser GW, Keay A, Bassford D, Ott R, Ryder W. The high resolution gamma imager (HRGI): a CCD based camera for medical imaging. Nucl Instrum Methods Phys Res A 2003;513(1–2):23–6.CrossRef
59.
Zurück zum Zitat Llopart X, Campbell M, Dinapoli R, Segundo DS, Pemigotti E. Medipix2: a 64-k pixel readout chip with 55-μm square elements working in single photon counting mode. IEEE Trans Nucl Sci 2002;49(5):2279–83.CrossRef Llopart X, Campbell M, Dinapoli R, Segundo DS, Pemigotti E. Medipix2: a 64-k pixel readout chip with 55-μm square elements working in single photon counting mode. IEEE Trans Nucl Sci 2002;49(5):2279–83.CrossRef
60.
Zurück zum Zitat Matherson KJ, Barber HB, Barrett HH, Eskin JD, Dereniak EL, Marks DG, et al. Progress in the development of larger-area modular 64× 64 CdZnTe imaging arrays for nuclear medicine. IEEE Trans Nucl Sci 1998;45:354–8.CrossRef Matherson KJ, Barber HB, Barrett HH, Eskin JD, Dereniak EL, Marks DG, et al. Progress in the development of larger-area modular 64× 64 CdZnTe imaging arrays for nuclear medicine. IEEE Trans Nucl Sci 1998;45:354–8.CrossRef
61.
Zurück zum Zitat Miyaata E, Tamur K. Novel photon-counting detector for 0.1–100 keV X-ray imaging possessing high spatial resolution. Jpn J Appl Phys 2003;42:L1201–04, Part 2 No 10A.CrossRef Miyaata E, Tamur K. Novel photon-counting detector for 0.1–100 keV X-ray imaging possessing high spatial resolution. Jpn J Appl Phys 2003;42:L1201–04, Part 2 No 10A.CrossRef
62.
Zurück zum Zitat Miyataa E, Mikia M, Tawaa N, Kamiyamaa D, Miyaguchi K. Development of new X-ray imaging device sensitive to 0.1–100 keV. Nucl Instrum Methods Phys Res A 2004;525:122–5.CrossRef Miyataa E, Mikia M, Tawaa N, Kamiyamaa D, Miyaguchi K. Development of new X-ray imaging device sensitive to 0.1–100 keV. Nucl Instrum Methods Phys Res A 2004;525:122–5.CrossRef
63.
Zurück zum Zitat Nagarkar VV, Shestakova I, Gaysinskiy V, Tipnis SV, Singh B, Barber W, et al. A CCD-based detector for SPECT. IEEE Trans Nucl Sci 2006;53(1):54–8.CrossRef Nagarkar VV, Shestakova I, Gaysinskiy V, Tipnis SV, Singh B, Barber W, et al. A CCD-based detector for SPECT. IEEE Trans Nucl Sci 2006;53(1):54–8.CrossRef
64.
Zurück zum Zitat Vavrik D, Jakubek J, Visschers J, Pospisil S, Ponchut C, Zemankova J. First tests of a Medipix-1 pixel detector for X-ray dynamic defectoscopy. Nucl Instrum Methods Phys Res A 2002;487(1–2):216–23.CrossRef Vavrik D, Jakubek J, Visschers J, Pospisil S, Ponchut C, Zemankova J. First tests of a Medipix-1 pixel detector for X-ray dynamic defectoscopy. Nucl Instrum Methods Phys Res A 2002;487(1–2):216–23.CrossRef
65.
Zurück zum Zitat de Vree GA, Westra AH, van der Have F, Moody I, Ligtvoet CM, Beekman FJ. Photon counting gamma camera based on an electron-multiplying CCD. IEEE Trans Nucl Sci 2005;52(3):580–8.CrossRef de Vree GA, Westra AH, van der Have F, Moody I, Ligtvoet CM, Beekman FJ. Photon counting gamma camera based on an electron-multiplying CCD. IEEE Trans Nucl Sci 2005;52(3):580–8.CrossRef
66.
Zurück zum Zitat Beekman FJ, de Vree GA. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution. Phys Med Biol 2005;50(12):N109–19.PubMedCrossRef Beekman FJ, de Vree GA. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution. Phys Med Biol 2005;50(12):N109–19.PubMedCrossRef
67.
Zurück zum Zitat Kim H, Furenlid LR, Crawford MJ, Wilson DW, Barber HB, Peterson TE, et al. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys 2006;33(2):465–74.PubMedCrossRef Kim H, Furenlid LR, Crawford MJ, Wilson DW, Barber HB, Peterson TE, et al. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys 2006;33(2):465–74.PubMedCrossRef
68.
Zurück zum Zitat Kastis GA, Wu MC, Balzer SJ, Wilson DW, Furenlid LR, Stevenson G, et al. Tomographic small-animal imaging using a high-resolution semiconductor camera. IEEE Trans Nucl Sci 2002;49(1):172–5.CrossRef Kastis GA, Wu MC, Balzer SJ, Wilson DW, Furenlid LR, Stevenson G, et al. Tomographic small-animal imaging using a high-resolution semiconductor camera. IEEE Trans Nucl Sci 2002;49(1):172–5.CrossRef
69.
Zurück zum Zitat Meng LJ, Clinthorne NH, Skinner S, Hay RV, Gross M. Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging. IEEE Trans Nucl Sci 2006; accepted for publication. Meng LJ, Clinthorne NH, Skinner S, Hay RV, Gross M. Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging. IEEE Trans Nucl Sci 2006; accepted for publication.
70.
Zurück zum Zitat Funk T, Després P, Barber WC, Shah KS, Hasegawa BH. A multipinhole small animal SPECT system with submillimeter spatial resolution. Med Phys 2006;33(5):1259–67.PubMedCrossRef Funk T, Després P, Barber WC, Shah KS, Hasegawa BH. A multipinhole small animal SPECT system with submillimeter spatial resolution. Med Phys 2006;33(5):1259–67.PubMedCrossRef
71.
Zurück zum Zitat Beekman FJ. Stralingsdetectieinrichting. Dutch patent application, NL-1029558, July 2005. Beekman FJ. Stralingsdetectieinrichting. Dutch patent application, NL-1029558, July 2005.
72.
Zurück zum Zitat Walrand S, Jamar F, de Jong M, Pauwels S. Evaluation of novel whole-body high-resolution rodent SPECT (Linoview) based on direct acquisition of linogram projections. J Nucl Med 2005;46(11):1872–80.PubMed Walrand S, Jamar F, de Jong M, Pauwels S. Evaluation of novel whole-body high-resolution rodent SPECT (Linoview) based on direct acquisition of linogram projections. J Nucl Med 2005;46(11):1872–80.PubMed
73.
Zurück zum Zitat Huang Q, Zeng GL. An analytical algorithm for skew-slit imaging geometry with nonuniform attenuation correction. Med Phys 2006;33(4):997–1004.PubMedCrossRef Huang Q, Zeng GL. An analytical algorithm for skew-slit imaging geometry with nonuniform attenuation correction. Med Phys 2006;33(4):997–1004.PubMedCrossRef
74.
Zurück zum Zitat Snigirev A, Kohn V, Snigireva I, Lengeler B. A compound refractive lens for focusing high-energy X-rays. Nature 1996;384:49–51.CrossRef Snigirev A, Kohn V, Snigireva I, Lengeler B. A compound refractive lens for focusing high-energy X-rays. Nature 1996;384:49–51.CrossRef
75.
Zurück zum Zitat Pivovaroff MJ, Barber WB, Christensen FE, Craig WW, Decker T, Epstein M, et al. Small-animal radionuclide imaging with focusing gamma-ray optics. Proc SPIE Int Soc Opt Eng 2004;5199:147. Pivovaroff MJ, Barber WB, Christensen FE, Craig WW, Decker T, Epstein M, et al. Small-animal radionuclide imaging with focusing gamma-ray optics. Proc SPIE Int Soc Opt Eng 2004;5199:147.
76.
Zurück zum Zitat Serlemitsos PJ. Conical foil X-ray mirrors: performance and projections. Appl Opt 1988;27(8):1447–52.CrossRef Serlemitsos PJ. Conical foil X-ray mirrors: performance and projections. Appl Opt 1988;27(8):1447–52.CrossRef
77.
Zurück zum Zitat Serlemitsos PJ, Soong Y. Foil X-ray mirrors. Astrophys Space Sci 1996;239:177–96.CrossRef Serlemitsos PJ, Soong Y. Foil X-ray mirrors. Astrophys Space Sci 1996;239:177–96.CrossRef
78.
Zurück zum Zitat Hildebrandt G, Bradazek H. Approaching real X-ray optics. The Rigaku Journal 2000;17:13–22. Hildebrandt G, Bradazek H. Approaching real X-ray optics. The Rigaku Journal 2000;17:13–22.
79.
Zurück zum Zitat Weisenberger AG, Gleason SS, Goddard J, Kross B, Majewski S, Meikle SR, et al. A restraint-free small animal SPECT imaging system with motion tracking. IEEE Trans Nucl Sci 2005;52(3):638–44. Weisenberger AG, Gleason SS, Goddard J, Kross B, Majewski S, Meikle SR, et al. A restraint-free small animal SPECT imaging system with motion tracking. IEEE Trans Nucl Sci 2005;52(3):638–44.
Metadaten
Titel
The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging
verfasst von
Freek Beekman
Frans van der Have
Publikationsdatum
01.02.2007
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 2/2007
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-006-0248-6

Weitere Artikel der Ausgabe 2/2007

European Journal of Nuclear Medicine and Molecular Imaging 2/2007 Zur Ausgabe