Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 7/2007

01.07.2007 | Original article

18F-fluorothymidine kinetics of malignant brain tumors

verfasst von: Christiaan Schiepers, Wei Chen, Magnus Dahlbom, Timothy Cloughesy, Carl K. Hoh, Sung-Cheng Huang

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 7/2007

Einloggen, um Zugang zu erhalten

Abstract

Purpose

18F-labeled deoxy-fluorothymidine (FLT), a marker of cellular proliferation, has been used in PET tumor imaging. Here, the FLT kinetics of malignant brain tumors were investigated.

Methods

Seven patients with high-grade tumors and two patients with metastases had 12 studies. After 1.5 MBq/kg 18F-FLT had been administered intravenously, dynamic PET studies were acquired for 75 min. Images were reconstructed with iterative algorithms, and corrections applied for attenuation and scatter. Parametric images were generated with factor analysis, and vascular input and tumor output functions were derived. Compartmental models were used to estimate the rate constants.

Results

The standard three-compartment model appeared appropriate to describe 18F-FLT uptake. Corrections for blood volume, metabolites, and partial volume were necessary. Kinetic parameters were correlated with tumor pathology and clinical follow-up data. Two groups could be distinguished: lesions that were tumor predominant (TumP) and lesions that were treatment change predominant (TrcP). Both groups had a widely varying k 1 (transport across the damaged BBB, range 0.02–0.2). Group TrcP had a relatively low k 3 (phosphorylation rate, range 0.017–0.027), whereas k 3 varied sevenfold in group TumP (range 0.015–0.11); the k 3 differences were significant (p < 0.01). The fraction of transported FLT that is phosphorylated [k 3/(k 2+k 3)] was able to separate the two groups (p < 0.001).

Conclusion

A three-compartment model with blood volume, metabolite, and partial volume corrections could adequately describe 18F-FLT kinetics in malignant brain tumors. Patients could be distinguished as having: (1) tumor-predominant or (2) treatment change-predominant lesions, with significantly different phosphorylation rates.
Literatur
1.
Zurück zum Zitat Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–6.PubMedCrossRef Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–6.PubMedCrossRef
2.
Zurück zum Zitat Shields AF. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med 2003;44(9):1432–4.PubMed Shields AF. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med 2003;44(9):1432–4.PubMed
3.
Zurück zum Zitat Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 2002;29(3):281–7.PubMedCrossRef Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 2002;29(3):281–7.PubMedCrossRef
4.
Zurück zum Zitat Seitz U, Wagner M, Neumaier B, Wawra E, Glatting G, Leder G, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[18F]fluoro-3′-deoxythymidine ([18F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 2002;29(9):1174–81.PubMedCrossRef Seitz U, Wagner M, Neumaier B, Wawra E, Glatting G, Leder G, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[18F]fluoro-3′-deoxythymidine ([18F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 2002;29(9):1174–81.PubMedCrossRef
5.
Zurück zum Zitat Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005;46(6):945–52.PubMed Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005;46(6):945–52.PubMed
6.
Zurück zum Zitat Cobben DC, Elsinga PH, Hoekstra HJ, Suurmeijer AJ, Vaalburg W, Maas B, et al. Is 18F-3′-fluoro-3′-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med 2004;45(10):1677–82.PubMed Cobben DC, Elsinga PH, Hoekstra HJ, Suurmeijer AJ, Vaalburg W, Maas B, et al. Is 18F-3′-fluoro-3′-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med 2004;45(10):1677–82.PubMed
7.
Zurück zum Zitat Francis DL, Visvikis D, Costa DC, Croasdale I, Arulampalam TH, Luthra SK, et al. Assessment of recurrent colorectal cancer following 5-fluorouracil chemotherapy using both 18FDG and 18FLT PET. Eur J Nucl Med Mol Imaging 2004;31(6):928.PubMedCrossRef Francis DL, Visvikis D, Costa DC, Croasdale I, Arulampalam TH, Luthra SK, et al. Assessment of recurrent colorectal cancer following 5-fluorouracil chemotherapy using both 18FDG and 18FLT PET. Eur J Nucl Med Mol Imaging 2004;31(6):928.PubMedCrossRef
8.
Zurück zum Zitat Cobben DC, van der Laan BF, Maas B, Vaalburg W, Suurmeijer AJ, Hoekstra HJ, et al. 18F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET. J Nucl Med 2004;45(2):226–31.PubMed Cobben DC, van der Laan BF, Maas B, Vaalburg W, Suurmeijer AJ, Hoekstra HJ, et al. 18F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET. J Nucl Med 2004;45(2):226–31.PubMed
9.
Zurück zum Zitat Visvikis D, Francis D, Mulligan R, Costa DC, Croasdale I, Luthra SK, et al. Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging 2004;31(2):169–78.PubMedCrossRef Visvikis D, Francis D, Mulligan R, Costa DC, Croasdale I, Luthra SK, et al. Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging 2004;31(2):169–78.PubMedCrossRef
10.
Zurück zum Zitat Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 2005;46(2):274–82.PubMed Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 2005;46(2):274–82.PubMed
11.
Zurück zum Zitat Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 2005;46(2):371–80.PubMed Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 2005;46(2):371–80.PubMed
12.
Zurück zum Zitat Yun M, Oh SJ, Ha HJ, Ryu JS, Moon DH. High radiochemical yield synthesis of 3′-deoxy-3′-[18F]fluorothymidine using (5′-O-dimethoxytrityl-2′-deoxy-3′-O-nosyl-beta-D-threo pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol 2003;30(2):151–7.PubMedCrossRef Yun M, Oh SJ, Ha HJ, Ryu JS, Moon DH. High radiochemical yield synthesis of 3′-deoxy-3′-[18F]fluorothymidine using (5′-O-dimethoxytrityl-2′-deoxy-3′-O-nosyl-beta-D-threo pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol 2003;30(2):151–7.PubMedCrossRef
13.
Zurück zum Zitat Nuyts J, Baete K, Beque D, Dupont P. Comparison between MAP and postprocessed ML for image reconstruction in emission tomography when anatomical knowledge is available. IEEE Trans Med Imaging 2005;24(5):667–75.PubMedCrossRef Nuyts J, Baete K, Beque D, Dupont P. Comparison between MAP and postprocessed ML for image reconstruction in emission tomography when anatomical knowledge is available. IEEE Trans Med Imaging 2005;24(5):667–75.PubMedCrossRef
14.
Zurück zum Zitat Nuyts J, Michel C, Dupont P. Maximum-likelihood expectation-maximization reconstruction of sinograms with arbitrary noise distribution using NEC-transformations. IEEE Trans Med Imaging 2001;20(5):365–75.PubMedCrossRef Nuyts J, Michel C, Dupont P. Maximum-likelihood expectation-maximization reconstruction of sinograms with arbitrary noise distribution using NEC-transformations. IEEE Trans Med Imaging 2001;20(5):365–75.PubMedCrossRef
15.
Zurück zum Zitat Schiepers C, Hoh CK, Dahlbom M, Wu HM, Phelps ME. Factor analysis for delineation of organ structures, creation of in- and output functions, and standardization of multicenter kinetic modeling. Proc SPIE 1999;3661:1343–50.CrossRef Schiepers C, Hoh CK, Dahlbom M, Wu HM, Phelps ME. Factor analysis for delineation of organ structures, creation of in- and output functions, and standardization of multicenter kinetic modeling. Proc SPIE 1999;3661:1343–50.CrossRef
16.
Zurück zum Zitat Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6(5):371–88.PubMedCrossRef Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6(5):371–88.PubMedCrossRef
17.
Zurück zum Zitat Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980;238(1):E69–82.PubMed Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980;238(1):E69–82.PubMed
18.
Zurück zum Zitat Schiepers C, Wu HM, Nuyts J, Dahlbom M, Hoh CK, Huang SC, et al. F-18 fluoride PET: Is non-invasive quantitation feasible with factor analysis? J Nucl Med 1997;38(5 Suppl):93P. Schiepers C, Wu HM, Nuyts J, Dahlbom M, Hoh CK, Huang SC, et al. F-18 fluoride PET: Is non-invasive quantitation feasible with factor analysis? J Nucl Med 1997;38(5 Suppl):93P.
19.
Zurück zum Zitat Schiepers C, Hoh CK, Dahlbom M, Wu HM, Phelps ME. Reproducibility of input functions obtained with factor analysis in breast cancer. J Nucl Med 1998;39(5 Suppl):165P. Schiepers C, Hoh CK, Dahlbom M, Wu HM, Phelps ME. Reproducibility of input functions obtained with factor analysis in breast cancer. J Nucl Med 1998;39(5 Suppl):165P.
20.
Zurück zum Zitat Schiepers C, Hoh CK, Seltzer MA, Phelps ME, Dahlbom M. Factor analysis for quantification of 11C-acetate PET in primary prostate cancer. J Nucl Med 2000;41(5 Suppl):100P. Schiepers C, Hoh CK, Seltzer MA, Phelps ME, Dahlbom M. Factor analysis for quantification of 11C-acetate PET in primary prostate cancer. J Nucl Med 2000;41(5 Suppl):100P.
21.
Zurück zum Zitat Schiepers C, Hoh CK, Nuyts J, Wu HM, Phelps ME, Dahlbom M. Factor analysis in prostate cancer: delineation of organ structures and automatic generation of in- and output functions. IEEE Trans Nucl Sci 2002;49(5):2338–43.CrossRef Schiepers C, Hoh CK, Nuyts J, Wu HM, Phelps ME, Dahlbom M. Factor analysis in prostate cancer: delineation of organ structures and automatic generation of in- and output functions. IEEE Trans Nucl Sci 2002;49(5):2338–43.CrossRef
22.
Zurück zum Zitat Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 1995;36(9):1714–22.PubMed Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 1995;36(9):1714–22.PubMed
23.
Zurück zum Zitat Schiepers C, Czernin J, Hoh CK, Nuyts J, Phelps ME, Dahlbom M. Factor analysis for automatic determination of myocardial flow in 13N-ammonia PET studies. J Nucl Med 2002;43(5 Suppl):52P. Schiepers C, Czernin J, Hoh CK, Nuyts J, Phelps ME, Dahlbom M. Factor analysis for automatic determination of myocardial flow in 13N-ammonia PET studies. J Nucl Med 2002;43(5 Suppl):52P.
24.
Zurück zum Zitat Schiepers C, Nuyts J, Wu HM, Verma RC. PET with 18F-fluoride: effects of iterative versus filtered backprojection reconstruction on kinetic modeling. IEEE Trans Nucl Sci 1997;44:1591–9.CrossRef Schiepers C, Nuyts J, Wu HM, Verma RC. PET with 18F-fluoride: effects of iterative versus filtered backprojection reconstruction on kinetic modeling. IEEE Trans Nucl Sci 1997;44:1591–9.CrossRef
25.
Zurück zum Zitat Schiepers C, Nuyts J, Wu HM, Dahlbom M, Huang SC, Phelps ME. Influence of iterative reconstruction on parameter estimation with three-compartment kinetic modeling. J Nucl Med 1997;38(5 Suppl):102P. Schiepers C, Nuyts J, Wu HM, Dahlbom M, Huang SC, Phelps ME. Influence of iterative reconstruction on parameter estimation with three-compartment kinetic modeling. J Nucl Med 1997;38(5 Suppl):102P.
26.
Zurück zum Zitat Wells JM, Mankoff DA, Eary JF, Spence AM, Muzi M, O’Sullivan F, et al. Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: preliminary patient results. Mol Imaging 2002;1(3):145–50.PubMedCrossRef Wells JM, Mankoff DA, Eary JF, Spence AM, Muzi M, O’Sullivan F, et al. Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: preliminary patient results. Mol Imaging 2002;1(3):145–50.PubMedCrossRef
27.
Zurück zum Zitat Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, et al. Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med 2006;47(10):1612–21.PubMed Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, et al. Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med 2006;47(10):1612–21.PubMed
Metadaten
Titel
18F-fluorothymidine kinetics of malignant brain tumors
verfasst von
Christiaan Schiepers
Wei Chen
Magnus Dahlbom
Timothy Cloughesy
Carl K. Hoh
Sung-Cheng Huang
Publikationsdatum
01.07.2007
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 7/2007
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-006-0354-5

Weitere Artikel der Ausgabe 7/2007

European Journal of Nuclear Medicine and Molecular Imaging 7/2007 Zur Ausgabe

Letter to the editor

Reply