Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 7/2009

01.07.2009 | Original Article

Effects of medial temporal lobe degeneration on brain perfusion in amnestic MCI of AD type: deafferentation and functional compensation?

verfasst von: Eric Guedj, Emmanuel J. Barbeau, Mira Didic, Olivier Felician, Catherine de Laforte, Jean-Philippe Ranjeva, Michel Poncet, Patrick J. Cozzone, Olivier Mundler, Mathieu Ceccaldi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 7/2009

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Cortical atrophy is correlated with the progression of neuropathological lesions within the medial temporal lobes (MTL) in Alzheimer’s disease (AD). Our aim was to determine which local and remote functional changes result from MTL volume loss at the predementia stage.

Methods

We studied the relationship between entorhinal and hippocampal MR volumes and whole-brain SPECT perfusion via a voxel-based correlative analysis in 19 patients with amnestic mild cognitive impairment with a memory profile suggestive of early AD.

Results

Right MTL volumes were positively correlated with remote posterior perfusion of the posterior cingulate cortex, and negatively correlated with remote anterior perfusion of the right medial and dorsolateral prefrontal cortex. There was no local correlation between volumes and perfusion within the MTL.

Conclusion

These findings provide further insight into functional changes that result from MTL volume loss during the predementia stage of AD. The positive correlation between MTL volumes and posterior cingulate perfusion may reflect the deafferentation of a temporocingulate network due to mediotemporal degeneration. The paradoxical negative correlation between MTL volumes and prefrontal perfusion may result from recruitment of an alternative anterior temporofrontal network. It remains to be investigated how the “net sum” of this perfusion modulation affects memory and other cognitive domains through a possible compensatory perspective.
Literatur
1.
Zurück zum Zitat Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 2000;54:1760–77.PubMed Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 2000;54:1760–77.PubMed
2.
Zurück zum Zitat Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82:239–59.CrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82:239–59.CrossRef
3.
Zurück zum Zitat Delacourte A, David JP, Sergeant N, Buée L, Wattez A, Vermersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999;52:1158–65.PubMed Delacourte A, David JP, Sergeant N, Buée L, Wattez A, Vermersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999;52:1158–65.PubMed
4.
Zurück zum Zitat Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Morie E. Paradoxical hippocampus perfusion in mild-to-moderate Alzheimer’s disease. J Nucl Med 1998;39:293–8.PubMed Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Morie E. Paradoxical hippocampus perfusion in mild-to-moderate Alzheimer’s disease. J Nucl Med 1998;39:293–8.PubMed
5.
Zurück zum Zitat Chételat G, Desgranges B, Landeau B, Mézenge F, Poline JB, de la Sayette V, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain 2008;131:60–71.PubMedCrossRef Chételat G, Desgranges B, Landeau B, Mézenge F, Poline JB, de la Sayette V, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain 2008;131:60–71.PubMedCrossRef
6.
Zurück zum Zitat Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease. Neurology 2003;60:1374–7.PubMed Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease. Neurology 2003;60:1374–7.PubMed
7.
Zurück zum Zitat Nestor PJ, Fryer TD, Ikeda M, Hodges JR. Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). Eur J Neurosci 2003;18:2663–7.PubMedCrossRef Nestor PJ, Fryer TD, Ikeda M, Hodges JR. Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). Eur J Neurosci 2003;18:2663–7.PubMedCrossRef
8.
Zurück zum Zitat Huang C, Wahlund LO, Svensson L, Winblad B, Julin P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol 2002;2:9.PubMedCrossRef Huang C, Wahlund LO, Svensson L, Winblad B, Julin P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol 2002;2:9.PubMedCrossRef
9.
Zurück zum Zitat Matsuda H, Kitayama N, Ohnishi T, Asada T, Nakano S, Sakamoto S, et al. Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med 2002;43:304–11.PubMed Matsuda H, Kitayama N, Ohnishi T, Asada T, Nakano S, Sakamoto S, et al. Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med 2002;43:304–11.PubMed
10.
Zurück zum Zitat Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005;64:1860–7.PubMedCrossRef Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005;64:1860–7.PubMedCrossRef
11.
Zurück zum Zitat Scheff SW, Sparks L, Price DA. Quantitative assessment of synaptic density in the entorhinal cortex in Alzheimer’s disease. Ann Neurol 1993;34:356–61.PubMedCrossRef Scheff SW, Sparks L, Price DA. Quantitative assessment of synaptic density in the entorhinal cortex in Alzheimer’s disease. Ann Neurol 1993;34:356–61.PubMedCrossRef
12.
Zurück zum Zitat Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65:404–11.PubMedCrossRef Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65:404–11.PubMedCrossRef
13.
Zurück zum Zitat Jobst KA, Smith AD, Barker CS, Wear A, King EM, Smith A, et al. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1992;55:190–4.PubMedCrossRef Jobst KA, Smith AD, Barker CS, Wear A, King EM, Smith A, et al. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1992;55:190–4.PubMedCrossRef
14.
Zurück zum Zitat Yamaguchi S, Meguro K, Itoh M, Hayasaka C, Shimada M, Yamazaki H, et al. Decreased cortical glucose metabolism correlates with hippocampal atrophy in Alzheimer’s disease as shown by MRI and PET. J Neurol Neurosurg Psychiatry 1997;62:596–600.PubMedCrossRef Yamaguchi S, Meguro K, Itoh M, Hayasaka C, Shimada M, Yamazaki H, et al. Decreased cortical glucose metabolism correlates with hippocampal atrophy in Alzheimer’s disease as shown by MRI and PET. J Neurol Neurosurg Psychiatry 1997;62:596–600.PubMedCrossRef
15.
Zurück zum Zitat Meguro K, LeMestric C, Landeau B, Desgranges B, Eustache F, Baron JC. Relations between hypometabolism in the posterior association neocortex and hippocampal atrophy in Alzheimer’s disease: a PET/MRI correlative study. J Neurol Neurosurg Psychiatry 2001;71:315–21.PubMedCrossRef Meguro K, LeMestric C, Landeau B, Desgranges B, Eustache F, Baron JC. Relations between hypometabolism in the posterior association neocortex and hippocampal atrophy in Alzheimer’s disease: a PET/MRI correlative study. J Neurol Neurosurg Psychiatry 2001;71:315–21.PubMedCrossRef
16.
Zurück zum Zitat Villain N, Desgranges B, Viader F, de la Sayette V, Mézenge F, Landeau B, et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease. J Neurosci 2008;28:6174–81.PubMedCrossRef Villain N, Desgranges B, Viader F, de la Sayette V, Mézenge F, Landeau B, et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease. J Neurosci 2008;28:6174–81.PubMedCrossRef
17.
Zurück zum Zitat Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–8.PubMedCrossRef Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–8.PubMedCrossRef
18.
Zurück zum Zitat Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734–46.PubMedCrossRef Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734–46.PubMedCrossRef
19.
Zurück zum Zitat Sarazin M, Berr C, De Rotrou J, Fabrigoule C, Pasquier F, Legrain S, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology 2007;69:1859–67.PubMedCrossRef Sarazin M, Berr C, De Rotrou J, Fabrigoule C, Pasquier F, Legrain S, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology 2007;69:1859–67.PubMedCrossRef
20.
Zurück zum Zitat Grober E, Buschke H, Crystal H, Bang S, Dresner R. Screening for dementia by memory testing. Neurology 1988;38:900–3.PubMed Grober E, Buschke H, Crystal H, Bang S, Dresner R. Screening for dementia by memory testing. Neurology 1988;38:900–3.PubMed
21.
Zurück zum Zitat Barbeau E, Didic M, Tramoni E, Felician O, Joubert S, Sontheimer A, et al. Evaluation of visual recognition memory in MCI patients. Neurology 2004;62:1317–22.PubMed Barbeau E, Didic M, Tramoni E, Felician O, Joubert S, Sontheimer A, et al. Evaluation of visual recognition memory in MCI patients. Neurology 2004;62:1317–22.PubMed
22.
Zurück zum Zitat Guedj E, Barbeau EJ, Didic M, Felician O, de Laforte C, Ceccaldi M, et al. Identification of subgroups in amnestic mild cognitive impairment. Neurology 2006;67:356–8.PubMedCrossRef Guedj E, Barbeau EJ, Didic M, Felician O, de Laforte C, Ceccaldi M, et al. Identification of subgroups in amnestic mild cognitive impairment. Neurology 2006;67:356–8.PubMedCrossRef
23.
Zurück zum Zitat Eustache F, Desgranges B, Giffard B, de la Sayette V, Baron JC. Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport 2001;12:683–5.PubMedCrossRef Eustache F, Desgranges B, Giffard B, de la Sayette V, Baron JC. Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport 2001;12:683–5.PubMedCrossRef
24.
Zurück zum Zitat Duvernoy HM. The human brain: surface, three-dimensional sectional anatomy with MRI, and blood supply. New York: Springer; 1998. Duvernoy HM. The human brain: surface, three-dimensional sectional anatomy with MRI, and blood supply. New York: Springer; 1998.
25.
Zurück zum Zitat Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, et al. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 1998;19:659–71.PubMed Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, et al. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 1998;19:659–71.PubMed
26.
Zurück zum Zitat Barbeau E, Sontheimer A, Joubert S, Didic M, Felician O, Tramoni E, et al. The human perirhinal cortex. Rev Neurol (Paris) 2004;160:401–11. Barbeau E, Sontheimer A, Joubert S, Didic M, Felician O, Tramoni E, et al. The human perirhinal cortex. Rev Neurol (Paris) 2004;160:401–11.
27.
Zurück zum Zitat Eritaia J, Wood SJ, Stuart GW, Bridle N, Dudgeon P, Maruff P, et al. An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 2000;44:973–7.PubMedCrossRef Eritaia J, Wood SJ, Stuart GW, Bridle N, Dudgeon P, Maruff P, et al. An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 2000;44:973–7.PubMedCrossRef
28.
Zurück zum Zitat Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002;13:1939–43.PubMedCrossRef Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002;13:1939–43.PubMedCrossRef
29.
Zurück zum Zitat de Leon MJ, Convit A, DeSanti S, Bobinski M, George AE, Wisniewski HM, et al. Contribution of structural neuroimaging to the early diagnosis of Alzheimer’s disease. Int Psychogeriatr 1997;9:183–90.PubMedCrossRef de Leon MJ, Convit A, DeSanti S, Bobinski M, George AE, Wisniewski HM, et al. Contribution of structural neuroimaging to the early diagnosis of Alzheimer’s disease. Int Psychogeriatr 1997;9:183–90.PubMedCrossRef
30.
Zurück zum Zitat Chetelat G, Baron JC. Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 2003;18:525–41.PubMedCrossRef Chetelat G, Baron JC. Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 2003;18:525–41.PubMedCrossRef
31.
Zurück zum Zitat Teipel SJ, Flatz WH, Heinsen H, Bokde AL, Schoenberg SO, Stöckel S, et al. Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 2005;128:2626–44.PubMedCrossRef Teipel SJ, Flatz WH, Heinsen H, Bokde AL, Schoenberg SO, Stöckel S, et al. Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 2005;128:2626–44.PubMedCrossRef
32.
Zurück zum Zitat Frisoni GB, Testa C, Zorzan A, Sabattoli F, Beltramello A, Soininen H, et al. Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 2002;73:657–64.PubMedCrossRef Frisoni GB, Testa C, Zorzan A, Sabattoli F, Beltramello A, Soininen H, et al. Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 2002;73:657–64.PubMedCrossRef
33.
Zurück zum Zitat Mevel K, Desgranges B, Baron JC, Landeau B, De la Sayette V, Viader F, et al. Detecting hippocampal hypometabolism in mild cognitive impairment using automatic voxel-based approaches. Neuroimage 2007;37:18–25.PubMedCrossRef Mevel K, Desgranges B, Baron JC, Landeau B, De la Sayette V, Viader F, et al. Detecting hippocampal hypometabolism in mild cognitive impairment using automatic voxel-based approaches. Neuroimage 2007;37:18–25.PubMedCrossRef
34.
Zurück zum Zitat DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–55.PubMedCrossRef DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–55.PubMedCrossRef
35.
Zurück zum Zitat Truchot L, Costes SN, Zimmer L, Laurent B, Le Bars D, Thomas-Antérion C, et al. Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. Neurology 2007;69:1012–7.PubMedCrossRef Truchot L, Costes SN, Zimmer L, Laurent B, Le Bars D, Thomas-Antérion C, et al. Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. Neurology 2007;69:1012–7.PubMedCrossRef
36.
Zurück zum Zitat Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ. Hippocampal hyperperfusion in Alzheimer’s disease. Neuroimage 2008;42:1267–74.PubMedCrossRef Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ. Hippocampal hyperperfusion in Alzheimer’s disease. Neuroimage 2008;42:1267–74.PubMedCrossRef
37.
Zurück zum Zitat Karas GB, Scheltens P, Rombouts SA, Visser PJ, van Schijndel RA, Fox NC, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004;23:708–16.PubMedCrossRef Karas GB, Scheltens P, Rombouts SA, Visser PJ, van Schijndel RA, Fox NC, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004;23:708–16.PubMedCrossRef
38.
Zurück zum Zitat Barbeau EJ, Ranjeva JP, Didic M, Confort-Gouny S, Felician O, Soulier E, et al. Profile of memory impairment and gray matter loss in amnestic mild cognitive impairment. Neuropsychologia 2008;46:1009–19.PubMedCrossRef Barbeau EJ, Ranjeva JP, Didic M, Confort-Gouny S, Felician O, Soulier E, et al. Profile of memory impairment and gray matter loss in amnestic mild cognitive impairment. Neuropsychologia 2008;46:1009–19.PubMedCrossRef
39.
Zurück zum Zitat De Carli C, Atack JR, Ball MJ. Post mortem regional neurofibrillary tangle densities but not senile plaque densities are related to regional cerebral rates for glucose during life in Alzheimer’s disease patients. Neurodegeneration 1992;1:113–21. De Carli C, Atack JR, Ball MJ. Post mortem regional neurofibrillary tangle densities but not senile plaque densities are related to regional cerebral rates for glucose during life in Alzheimer’s disease patients. Neurodegeneration 1992;1:113–21.
40.
Zurück zum Zitat Hayashi T, Fukuyama H, Katsumi Y, Hanakawa T, Nagahama Y, Yamauchi H, et al. Cerebral glucose metabolism in unilateral entorhinal cortex-lesioned rats: an animal PET study. Neuroreport 1999;10:2113–8.PubMedCrossRef Hayashi T, Fukuyama H, Katsumi Y, Hanakawa T, Nagahama Y, Yamauchi H, et al. Cerebral glucose metabolism in unilateral entorhinal cortex-lesioned rats: an animal PET study. Neuroreport 1999;10:2113–8.PubMedCrossRef
41.
Zurück zum Zitat Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 1999;122:1519–31.PubMedCrossRef Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 1999;122:1519–31.PubMedCrossRef
42.
Zurück zum Zitat Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 2006;31:496–504.PubMedCrossRef Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 2006;31:496–504.PubMedCrossRef
43.
Zurück zum Zitat Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 2005;15:997–1005.PubMedCrossRef Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 2005;15:997–1005.PubMedCrossRef
44.
Zurück zum Zitat Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry 1937;38:725–43 Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry 1937;38:725–43
45.
Zurück zum Zitat Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999;22:425–89.PubMed Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999;22:425–89.PubMed
46.
Zurück zum Zitat Desgranges B, Baron JC, de la Sayette V, Petit-Taboué MC, Benali K, Landeau B, et al. The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 1998;121:611–31.PubMedCrossRef Desgranges B, Baron JC, de la Sayette V, Petit-Taboué MC, Benali K, Landeau B, et al. The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 1998;121:611–31.PubMedCrossRef
47.
Zurück zum Zitat McDonald CR, Crosson B, Valenstein E, Bowers D. Verbal encoding deficits in a patient with a left retrosplenial lesion. Neurocase 2001;7:407–17.PubMedCrossRef McDonald CR, Crosson B, Valenstein E, Bowers D. Verbal encoding deficits in a patient with a left retrosplenial lesion. Neurocase 2001;7:407–17.PubMedCrossRef
48.
Zurück zum Zitat Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 2000;12:1–47.PubMedCrossRef Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 2000;12:1–47.PubMedCrossRef
49.
Zurück zum Zitat Berthoz A. Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 1997;352:1437–48.PubMedCrossRef Berthoz A. Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 1997;352:1437–48.PubMedCrossRef
50.
Zurück zum Zitat Maddock RJ, Garrett AS, Buonocore MH. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 2001;104:667–76.PubMedCrossRef Maddock RJ, Garrett AS, Buonocore MH. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 2001;104:667–76.PubMedCrossRef
51.
Zurück zum Zitat Backman L, Andersson JL, Nyberg L, Winblad B, Nordberg A, Almkvist O. Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 1999;52:1861–70.PubMed Backman L, Andersson JL, Nyberg L, Winblad B, Nordberg A, Almkvist O. Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 1999;52:1861–70.PubMed
52.
Zurück zum Zitat Nguyen DK, Botez MI. Diaschisis and neurobehavior. Can J Neurol Sci 1998;25:5–12.PubMed Nguyen DK, Botez MI. Diaschisis and neurobehavior. Can J Neurol Sci 1998;25:5–12.PubMed
53.
Zurück zum Zitat Huang C, Wahlund LO, Almkvist O, Elehu D, Svensson L, Jonsson T, et al. Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment. Neuroimage 2003;19:1137–44.PubMedCrossRef Huang C, Wahlund LO, Almkvist O, Elehu D, Svensson L, Jonsson T, et al. Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment. Neuroimage 2003;19:1137–44.PubMedCrossRef
54.
Zurück zum Zitat Heun R, Freymann K, Erb M, Leube DT, Jessen F, Kircher TT, et al. Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiol Aging 2007;28:404–13.PubMedCrossRef Heun R, Freymann K, Erb M, Leube DT, Jessen F, Kircher TT, et al. Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiol Aging 2007;28:404–13.PubMedCrossRef
55.
Zurück zum Zitat Garrido GE, Furuie SS, Buchpiguel CA, Bottino CM, Almeida OP, Cid CG, et al. Relation between medial temporal atrophy and functional brain activity during memory processing in Alzheimer’s disease: a combined MRI and SPECT study. J Neurol Neurosurg Psychiatry 2002;73:508–16.PubMedCrossRef Garrido GE, Furuie SS, Buchpiguel CA, Bottino CM, Almeida OP, Cid CG, et al. Relation between medial temporal atrophy and functional brain activity during memory processing in Alzheimer’s disease: a combined MRI and SPECT study. J Neurol Neurosurg Psychiatry 2002;73:508–16.PubMedCrossRef
56.
Zurück zum Zitat Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. Neuroimage 2005;25:253–66.PubMedCrossRef Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. Neuroimage 2005;25:253–66.PubMedCrossRef
57.
Zurück zum Zitat Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 2005;64:501–8.PubMed Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 2005;64:501–8.PubMed
58.
Zurück zum Zitat Backman L, Small JB, Fratiglioni L. Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain 2001;124:96–102.PubMedCrossRef Backman L, Small JB, Fratiglioni L. Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain 2001;124:96–102.PubMedCrossRef
59.
Zurück zum Zitat Moscovitch M. Memory and working-with-memory: a component process model based on modules and central systems. J Cogn Neurosci 1992;4:257–67.CrossRef Moscovitch M. Memory and working-with-memory: a component process model based on modules and central systems. J Cogn Neurosci 1992;4:257–67.CrossRef
60.
Zurück zum Zitat Mosconi L, Pupi A, De Cristofaro MT, Fayyaz M, Sorbi S, Herholz K. Functional interactions of the entorhinal cortex: an 18F-FDG PET study on normal aging and Alzheimer’s disease. J Nucl Med 2004;45:382–92.PubMed Mosconi L, Pupi A, De Cristofaro MT, Fayyaz M, Sorbi S, Herholz K. Functional interactions of the entorhinal cortex: an 18F-FDG PET study on normal aging and Alzheimer’s disease. J Nucl Med 2004;45:382–92.PubMed
Metadaten
Titel
Effects of medial temporal lobe degeneration on brain perfusion in amnestic MCI of AD type: deafferentation and functional compensation?
verfasst von
Eric Guedj
Emmanuel J. Barbeau
Mira Didic
Olivier Felician
Catherine de Laforte
Jean-Philippe Ranjeva
Michel Poncet
Patrick J. Cozzone
Olivier Mundler
Mathieu Ceccaldi
Publikationsdatum
01.07.2009
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 7/2009
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-009-1060-x

Weitere Artikel der Ausgabe 7/2009

European Journal of Nuclear Medicine and Molecular Imaging 7/2009 Zur Ausgabe