Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 1/2009

01.03.2009

Pre-clinical PET/MR: technological advances and new perspectives in biomedical research

verfasst von: Hans F. Wehrl, Martin S. Judenhofer, Stefan Wiehr, Bernd J. Pichler

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Sonderheft 1/2009

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Combined PET/MRI allows for multi-parametric imaging and reveals one or more functional processes simultaneously along with high-resolution morphology. Especially in small-animal research, where high soft tissue contrast is required, and the scan time as well as radiation dose are critical factors, the combination of PET and MRI would be beneficial compared with PET/CT.

Development

In the mid-1990’s, several research groups used different approaches to integrate PET detectors into high-field MRI. First, systems were based on optical fibres guiding the scintillation light to the PMT’s, which reside outside the fringe magnetic field. Recent advances in gamma ray detector technology, which were initiated mainly by the advent of avalanche photodiodes (APD’s) as well as the routine availability of fast scintillation materials like lutetium oxyorthosilicate (LSO), paved the way towards the development of fully magnetic-field-insensitive high-performance PET detectors.

Technology

Current animal PET/MR technologies are reviewed and pitfalls when engineering a full integration of a PET and a high-field MRI are discussed. Compact PET detectors can be integrated in small-bore, high-field MRI tomographs. Detailed performance evaluations have shown that the mutual interference between the two imaging systems could be minimized. The performance of all major MR applications, ranging from T1- or T2-weighted imaging up to echo-planar imaging (EPI) for functional MRI (fMRI) or magnetic resonance spectroscopy (MRS), could be maintained, even when the PET insert was built into the MRI and acquiring PET data simultaneously. Similarly, the PET system performance was not influenced by the static magnetic field or applied MRI sequences.

Applications

Initial biomedical research applications range from the combination of functional information from PET with the anatomical information from the MRI to multi-functional imaging combining metabollic PET and MRI data.

Discussion

Compared to other multi-modality approaches PET/MR offers a multitude of complementary function and anatomical information. The ability to obtain simultaneous PET and MRI data with this new imaging modality could have tremendous impact on small animal imaging research.
Literatur
1.
Zurück zum Zitat Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;1 (8):1369–79. Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;1 (8):1369–79.
2.
Zurück zum Zitat Beyer T, Townsend DW, Blodgett TM. Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med 2002;6 (1):24–34. Beyer T, Townsend DW, Blodgett TM. Dual-modality PET/CT tomography for clinical oncology. Q J Nucl Med 2002;6 (1):24–34.
3.
Zurück zum Zitat Antoch G, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004;2 (21):4357–68.CrossRef Antoch G, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004;2 (21):4357–68.CrossRef
4.
Zurück zum Zitat Townsend DW, et al. PET/CT today and tomorrow. J Nucl Med 2004;45 (Suppl 1):4S–14S.PubMed Townsend DW, et al. PET/CT today and tomorrow. J Nucl Med 2004;45 (Suppl 1):4S–14S.PubMed
5.
Zurück zum Zitat Pfannenberg AC, et al. Value of contrast-enhanced multi-phase CT in combined PET/CT protocols for oncological imaging. Br J Radiol 2007;80 (9154):437–45.PubMedCrossRef Pfannenberg AC, et al. Value of contrast-enhanced multi-phase CT in combined PET/CT protocols for oncological imaging. Br J Radiol 2007;80 (9154):437–45.PubMedCrossRef
6.
Zurück zum Zitat Czernin J, Schelbert HR. PET/CT in cancer patient management. Introduction. J Nucl Med 2007;48 (Suppl 1):2S, 3S.PubMed Czernin J, Schelbert HR. PET/CT in cancer patient management. Introduction. J Nucl Med 2007;48 (Suppl 1):2S, 3S.PubMed
7.
Zurück zum Zitat Schoder H, Gonen M. Screening for cancer with PET and PET/CT: potential and limitations. J Nucl Med 2007;48 (Suppl 1):4S–18S.PubMed Schoder H, Gonen M. Screening for cancer with PET and PET/CT: potential and limitations. J Nucl Med 2007;48 (Suppl 1):4S–18S.PubMed
8.
Zurück zum Zitat Cherry SR. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)—advances in PET imaging technology. J Nucl Med 2006;47 (11):1735–45.PubMed Cherry SR. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)—advances in PET imaging technology. J Nucl Med 2006;47 (11):1735–45.PubMed
9.
Zurück zum Zitat Judenhofer MS, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008;14 (4):459–65.PubMedCrossRef Judenhofer MS, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008;14 (4):459–65.PubMedCrossRef
10.
Zurück zum Zitat Schlemmer HP, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008;248 (3):1028–35.PubMedCrossRef Schlemmer HP, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008;248 (3):1028–35.PubMedCrossRef
11.
Zurück zum Zitat Catana C, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 2008;105 (10):3705–10.PubMedCrossRef Catana C, et al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 2008;105 (10):3705–10.PubMedCrossRef
12.
Zurück zum Zitat Raylman RR, et al. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager. J Magn Reson 2007;186 (2):305–10.PubMedCrossRef Raylman RR, et al. Simultaneous acquisition of magnetic resonance spectroscopy (MRS) data and positron emission tomography (PET) images with a prototype MR-compatible, small animal PET imager. J Magn Reson 2007;186 (2):305–10.PubMedCrossRef
13.
Zurück zum Zitat Yamamoto S, Mazumoto K, Senda M. Development of a multi-slice dual layer MR-compatible animal PET system using DOI detectors. Supplement to the Journal of Nuclear Medicine 2007;48:89P. Yamamoto S, Mazumoto K, Senda M. Development of a multi-slice dual layer MR-compatible animal PET system using DOI detectors. Supplement to the Journal of Nuclear Medicine 2007;48:89P.
14.
Zurück zum Zitat Lucas A, et al. Development of a combined micro-PET-MR system. IEEE Nucl Sci Symp Conf Rec 2006;2345–8. Lucas A, et al. Development of a combined micro-PET-MR system. IEEE Nucl Sci Symp Conf Rec 2006;2345–8.
15.
Zurück zum Zitat Mackewn JE, et al. Design and development of an MR-compatible PET scanner for imaging small animals. IEEE Trans Nucl Sci 2005;52 (5):1376.CrossRef Mackewn JE, et al. Design and development of an MR-compatible PET scanner for imaging small animals. IEEE Trans Nucl Sci 2005;52 (5):1376.CrossRef
16.
Zurück zum Zitat Goetz C, et al. SPECT low-field MRI system for small-animal imaging. J Nucl Med 2008;49 (1):88–93.PubMedCrossRef Goetz C, et al. SPECT low-field MRI system for small-animal imaging. J Nucl Med 2008;49 (1):88–93.PubMedCrossRef
17.
Zurück zum Zitat Shao Y, et al. Development of a PET detector system compatible with MRI/NMRsystems. IEEE Trans Nucl Sci 1997;44 (3):1167–71.CrossRef Shao Y, et al. Development of a PET detector system compatible with MRI/NMRsystems. IEEE Trans Nucl Sci 1997;44 (3):1167–71.CrossRef
18.
19.
Zurück zum Zitat Pichler B, et al. Performance Test of a LSO-APD PET Module in a 9.4 Tesla Magnet. IEEE Nucl Sci Symp Med Imaging Conf 1998;1237–39. Pichler B, et al. Performance Test of a LSO-APD PET Module in a 9.4 Tesla Magnet. IEEE Nucl Sci Symp Med Imaging Conf 1998;1237–39.
20.
Zurück zum Zitat Ziegler SI, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001;28 (2):136–43.PubMedCrossRef Ziegler SI, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001;28 (2):136–43.PubMedCrossRef
21.
Zurück zum Zitat Chatziioannou AF, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40 (7):1164–75.PubMed Chatziioannou AF, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40 (7):1164–75.PubMed
22.
Zurück zum Zitat Weber S, et al. The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity. IEEE Trans Med Imaging 1997;16 (5):684–9.PubMedCrossRef Weber S, et al. The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity. IEEE Trans Med Imaging 1997;16 (5):684–9.PubMedCrossRef
23.
Zurück zum Zitat Marsden PK, et al. Simultaneous PET and NMR. Br J Radiol 2002;75:S53–9.PubMed Marsden PK, et al. Simultaneous PET and NMR. Br J Radiol 2002;75:S53–9.PubMed
24.
Zurück zum Zitat Raylman RR, et al. Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol 2006;51 (24):6371–9.PubMedCrossRef Raylman RR, et al. Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol 2006;51 (24):6371–9.PubMedCrossRef
25.
Zurück zum Zitat Slates RB, et al. A study of artefacts in simultaneous pet and mr imaging using a prototype mr compatible pet scanner. Phys Med Biol 1999;44 (8):2015–27.PubMedCrossRef Slates RB, et al. A study of artefacts in simultaneous pet and mr imaging using a prototype mr compatible pet scanner. Phys Med Biol 1999;44 (8):2015–27.PubMedCrossRef
26.
Zurück zum Zitat Lecomte R, et al. Performance analysis of phoswich/APD detectors and low-noise CMOS preamplifiers for high-resolution PET systems. IEEE Trans Nucl Sci 2001;48 (3):650–55.CrossRef Lecomte R, et al. Performance analysis of phoswich/APD detectors and low-noise CMOS preamplifiers for high-resolution PET systems. IEEE Trans Nucl Sci 2001;48 (3):650–55.CrossRef
27.
Zurück zum Zitat Pichler BJ, et al. A 4 × 8 APD Array, Consisting of two Monolithic Silicon Wafers, Coupled to a 32-Channel LSO Matrix for High-Resolution PET. IEEE Trans Nucl Sci 2001;48 (4):1391–6.CrossRef Pichler BJ, et al. A 4 × 8 APD Array, Consisting of two Monolithic Silicon Wafers, Coupled to a 32-Channel LSO Matrix for High-Resolution PET. IEEE Trans Nucl Sci 2001;48 (4):1391–6.CrossRef
28.
Zurück zum Zitat Pichler BJ, et al. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 2004;49 (18):4305–19.PubMedCrossRef Pichler BJ, et al. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 2004;49 (18):4305–19.PubMedCrossRef
29.
Zurück zum Zitat Grazioso R, et al. APD Performance in Light Sharing PET Applications. IEEE Trans Nucl Sci 2005;52 (5):1413–16.CrossRef Grazioso R, et al. APD Performance in Light Sharing PET Applications. IEEE Trans Nucl Sci 2005;52 (5):1413–16.CrossRef
31.
Zurück zum Zitat Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996;23 (6):815–50.PubMedCrossRef Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996;23 (6):815–50.PubMedCrossRef
32.
Zurück zum Zitat Yamamoto S, Kuroda K, Senda M. Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci 2003;50 (5):1683–5.CrossRef Yamamoto S, Kuroda K, Senda M. Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci 2003;50 (5):1683–5.CrossRef
33.
Zurück zum Zitat Strul D, et al. Gamma shielding materials for MR-compatible PET. IEEE Trans Nucl Sci 2003;50 (1):60.CrossRef Strul D, et al. Gamma shielding materials for MR-compatible PET. IEEE Trans Nucl Sci 2003;50 (1):60.CrossRef
34.
Zurück zum Zitat Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005;15 (5):946–59.PubMedCrossRef Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005;15 (5):946–59.PubMedCrossRef
35.
Zurück zum Zitat Catana C, et al. Simultaneous Acquisition of Multislice PET and MR Images: Initial Results with a MR-Compatible PET Scanner. J Nucl Med 2006;47 (12):1968–76.PubMed Catana C, et al. Simultaneous Acquisition of Multislice PET and MR Images: Initial Results with a MR-Compatible PET Scanner. J Nucl Med 2006;47 (12):1968–76.PubMed
36.
Zurück zum Zitat Camacho CR, Plewes DB, Henkelman RM. Nonsusceptibility artifacts due to metallic objects in MR imaging. J Magn Reson Imaging 1995;5 (1):75–88.PubMedCrossRef Camacho CR, Plewes DB, Henkelman RM. Nonsusceptibility artifacts due to metallic objects in MR imaging. J Magn Reson Imaging 1995;5 (1):75–88.PubMedCrossRef
37.
Zurück zum Zitat Reese TG, et al. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003;49 (1):177–82.PubMedCrossRef Reese TG, et al. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003;49 (1):177–82.PubMedCrossRef
38.
Zurück zum Zitat Klose U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 1990;14 (1):26–30.PubMedCrossRef Klose U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 1990;14 (1):26–30.PubMedCrossRef
39.
Zurück zum Zitat Friedman L, Glover GH. Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 2006;23 (6):827–39.PubMedCrossRef Friedman L, Glover GH. Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 2006;23 (6):827–39.PubMedCrossRef
40.
Zurück zum Zitat Pichler BJ, et al. Performance test of an LSO-APD detector in a 7T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006;47 (4):639–47.PubMed Pichler BJ, et al. Performance test of an LSO-APD detector in a 7T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006;47 (4):639–47.PubMed
41.
Zurück zum Zitat Judenhofer MS, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7T magnet. Radiology 2007;244 (3):807–14.PubMedCrossRef Judenhofer MS, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7T magnet. Radiology 2007;244 (3):807–14.PubMedCrossRef
42.
Zurück zum Zitat Tai YC, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 2005;46 (3):455–63.PubMed Tai YC, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 2005;46 (3):455–63.PubMed
43.
Zurück zum Zitat Gilbert KM, et al. Design of field-cycled magnetic resonance systems for small animal imaging. Phys Med Biol 2006;51 (11):2825–41.PubMedCrossRef Gilbert KM, et al. Design of field-cycled magnetic resonance systems for small animal imaging. Phys Med Biol 2006;51 (11):2825–41.PubMedCrossRef
44.
Zurück zum Zitat Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008;53 (4):R1–R39.PubMedCrossRef Townsend DW. Multimodality imaging of structure and function. Phys Med Biol 2008;53 (4):R1–R39.PubMedCrossRef
45.
Zurück zum Zitat Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48 (6):932–45.PubMedCrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48 (6):932–45.PubMedCrossRef
46.
Zurück zum Zitat Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 2008;53 (12):3099–112.PubMedCrossRef Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 2008;53 (12):3099–112.PubMedCrossRef
47.
Zurück zum Zitat Basu S, Alavi A. Feasibility of automated partial-volume correction of SUVs in current PET/CT scanners: can manufacturers provide integrated, ready-to-use software? J Nucl Med 2008;49 (6):1031–2. author reply 1032–3.PubMedCrossRef Basu S, Alavi A. Feasibility of automated partial-volume correction of SUVs in current PET/CT scanners: can manufacturers provide integrated, ready-to-use software? J Nucl Med 2008;49 (6):1031–2. author reply 1032–3.PubMedCrossRef
48.
Zurück zum Zitat Baete K, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage 2004;23 (1):305–17.PubMedCrossRef Baete K, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neuroimage 2004;23 (1):305–17.PubMedCrossRef
49.
Zurück zum Zitat Thesen S, et al. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000;44 (3):457–65.PubMedCrossRef Thesen S, et al. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000;44 (3):457–65.PubMedCrossRef
50.
Zurück zum Zitat Brankov JG, et al. Multi-modality tomographic image reconstruction using mesh modeling. Proc IEEE Int Symp Biomedical Imaging 2002;2002:405–8.CrossRef Brankov JG, et al. Multi-modality tomographic image reconstruction using mesh modeling. Proc IEEE Int Symp Biomedical Imaging 2002;2002:405–8.CrossRef
51.
Zurück zum Zitat Cheon J, Lee JH. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 2008;41 (12):1630–40.CrossRefPubMed Cheon J, Lee JH. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 2008;41 (12):1630–40.CrossRefPubMed
52.
Zurück zum Zitat Jack CR Jr., et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008;131 (Pt 3):665–80. Jack CR Jr., et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008;131 (Pt 3):665–80.
53.
Zurück zum Zitat Ciccarelli O. et al. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 2008;7 (8):715–27. Ciccarelli O. et al. Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 2008;7 (8):715–27.
54.
Zurück zum Zitat El Fakhri G, et al. Quantitative simultaneous (99m)Tc-ECD/123I-FP-CIT SPECT in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2006;33 (1):87–92.PubMedCrossRef El Fakhri G, et al. Quantitative simultaneous (99m)Tc-ECD/123I-FP-CIT SPECT in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2006;33 (1):87–92.PubMedCrossRef
55.
Zurück zum Zitat Raichle ME, et al. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 1983;24 (9):790–8.PubMed Raichle ME, et al. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 1983;24 (9):790–8.PubMed
56.
Zurück zum Zitat Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med 1983;24 (9):782–9.PubMed Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med 1983;24 (9):782–9.PubMed
57.
Zurück zum Zitat Stollfuss JC, et al. Quantitative assessment of myocardial perfusion: is it of clinical relevance? Q J Nucl Med 1996;40 (1):76–84.PubMed Stollfuss JC, et al. Quantitative assessment of myocardial perfusion: is it of clinical relevance? Q J Nucl Med 1996;40 (1):76–84.PubMed
58.
Zurück zum Zitat Parkes LM. Quantification of cerebral perfusion using arterial spin labeling: two-compartment models. J Magn Reson Imaging 2005;22 (6):732–6.PubMedCrossRef Parkes LM. Quantification of cerebral perfusion using arterial spin labeling: two-compartment models. J Magn Reson Imaging 2005;22 (6):732–6.PubMedCrossRef
59.
Zurück zum Zitat Ostergaard L. Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 2004;15 (1):3–9.PubMedCrossRef Ostergaard L. Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 2004;15 (1):3–9.PubMedCrossRef
60.
Zurück zum Zitat Kober F, Duhamel G, Cozzone PJ. Experimental comparison of four FAIR arterial spin labeling techniques for quantification of mouse cerebral blood flow at 4.7 T. NMR Biomed 2008;21 (8):781–92.PubMedCrossRef Kober F, Duhamel G, Cozzone PJ. Experimental comparison of four FAIR arterial spin labeling techniques for quantification of mouse cerebral blood flow at 4.7 T. NMR Biomed 2008;21 (8):781–92.PubMedCrossRef
61.
Zurück zum Zitat Arbab AS, et al. Brain perfusion measured by flow-sensitive alternating inversion recovery (FAIR) and dynamic susceptibility contrast-enhanced magnetic resonance imaging: comparison with nuclear medicine technique. Eur Radiol 2001;11 (4):635–41.PubMedCrossRef Arbab AS, et al. Brain perfusion measured by flow-sensitive alternating inversion recovery (FAIR) and dynamic susceptibility contrast-enhanced magnetic resonance imaging: comparison with nuclear medicine technique. Eur Radiol 2001;11 (4):635–41.PubMedCrossRef
62.
Zurück zum Zitat Koziak AM, et al. Validation study of a pulsed arterial spin labeling technique by comparison to perfusion computed tomography. Magn Reson Imaging 2008;26 (4):543–53.PubMedCrossRef Koziak AM, et al. Validation study of a pulsed arterial spin labeling technique by comparison to perfusion computed tomography. Magn Reson Imaging 2008;26 (4):543–53.PubMedCrossRef
63.
Zurück zum Zitat Chen JJ, et al. Cerebral blood flow measurement using fMRI and PET: A cross-validation study. Int J Biomed Imaging 2008;2008:516359.PubMedCrossRef Chen JJ, et al. Cerebral blood flow measurement using fMRI and PET: A cross-validation study. Int J Biomed Imaging 2008;2008:516359.PubMedCrossRef
64.
Zurück zum Zitat Pohmann R, et al. Fast perfusion measurements in rat skeletal muscle at rest and during exercise with single-voxel FAIR (flow-sensitive alternating inversion recovery). Magn Reson Med 2006;55 (1):108–15.PubMedCrossRef Pohmann R, et al. Fast perfusion measurements in rat skeletal muscle at rest and during exercise with single-voxel FAIR (flow-sensitive alternating inversion recovery). Magn Reson Med 2006;55 (1):108–15.PubMedCrossRef
65.
Zurück zum Zitat Diao C, Zhu L. Temperature distribution and blood perfusion response in rat brain during selective brain cooling. Med Phys 2006;33 (7):2565–73.PubMedCrossRef Diao C, Zhu L. Temperature distribution and blood perfusion response in rat brain during selective brain cooling. Med Phys 2006;33 (7):2565–73.PubMedCrossRef
66.
Zurück zum Zitat Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol Clin North Am 2005;43 (1):169–87.PubMedCrossRef Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol Clin North Am 2005;43 (1):169–87.PubMedCrossRef
67.
Zurück zum Zitat Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med 2008;49 (Suppl 2):129S–48S.PubMedCrossRef Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med 2008;49 (Suppl 2):129S–48S.PubMedCrossRef
68.
Zurück zum Zitat Al-Hallaq HA, et al. Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation. Int J Radiat Oncol Biol Phys 1998;41 (1):151–9.PubMed Al-Hallaq HA, et al. Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation. Int J Radiat Oncol Biol Phys 1998;41 (1):151–9.PubMed
69.
Zurück zum Zitat Baudelet C, Gallez B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 2002;48 (6):980–6.PubMedCrossRef Baudelet C, Gallez B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 2002;48 (6):980–6.PubMedCrossRef
70.
Zurück zum Zitat Mason RP, Shukla H, Antich PP. In vivo oxygen tension and temperature: simultaneous determination using 19F NMR spectroscopy of perfluorocarbon. Magn Reson Med 1993;29 (3):296–302.PubMedCrossRef Mason RP, Shukla H, Antich PP. In vivo oxygen tension and temperature: simultaneous determination using 19F NMR spectroscopy of perfluorocarbon. Magn Reson Med 1993;29 (3):296–302.PubMedCrossRef
71.
Zurück zum Zitat Morris P, Bachelard H. Reflections on the application of 13C-MRS to research on brain metabolism. NMR Biomed 2003;16 (6, 7):303–12.PubMedCrossRef Morris P, Bachelard H. Reflections on the application of 13C-MRS to research on brain metabolism. NMR Biomed 2003;16 (6, 7):303–12.PubMedCrossRef
72.
Zurück zum Zitat Day SE, et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 2007;13 (11):1382–7.PubMedCrossRef Day SE, et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 2007;13 (11):1382–7.PubMedCrossRef
73.
Zurück zum Zitat Van Zijl PC, et al. Determination of cerebral glucose transport and metabolic kinetics by dynamic MR spectroscopy. Am J Physiol 1997;273 (6 Pt 1):E1216–27.PubMed Van Zijl PC, et al. Determination of cerebral glucose transport and metabolic kinetics by dynamic MR spectroscopy. Am J Physiol 1997;273 (6 Pt 1):E1216–27.PubMed
74.
Zurück zum Zitat Herholz K, Coope D, Jackson A. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol 2007;6 (8):711–24.PubMedCrossRef Herholz K, Coope D, Jackson A. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol 2007;6 (8):711–24.PubMedCrossRef
75.
Zurück zum Zitat Volkow ND, et al. PET evaluation of the dopamine system of the human brain. J Nucl Med 1996;37 (7):1242–56.PubMed Volkow ND, et al. PET evaluation of the dopamine system of the human brain. J Nucl Med 1996;37 (7):1242–56.PubMed
76.
Zurück zum Zitat Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem 2002;78 (3):553–64.PubMedCrossRef Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem 2002;78 (3):553–64.PubMedCrossRef
77.
Zurück zum Zitat Badgaiyan RD, Fischman AJ, Alpert NM. Striatal dopamine release in sequential learning. Neuroimage 2007;38 (3):549–56.PubMedCrossRef Badgaiyan RD, Fischman AJ, Alpert NM. Striatal dopamine release in sequential learning. Neuroimage 2007;38 (3):549–56.PubMedCrossRef
78.
Zurück zum Zitat Kida I, Hyder F. Physiology of functional magnetic resonance imaging: energetics and function. Methods Mol Med 2006;124:175–95.PubMed Kida I, Hyder F. Physiology of functional magnetic resonance imaging: energetics and function. Methods Mol Med 2006;124:175–95.PubMed
79.
Zurück zum Zitat Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol 1984;51 (5):1109–20.PubMed Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol 1984;51 (5):1109–20.PubMed
80.
Zurück zum Zitat Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986;83 (4):1140–4.PubMedCrossRef Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 1986;83 (4):1140–4.PubMedCrossRef
81.
Zurück zum Zitat Seitz RJ, Roland PE. Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neurol Scand 1992;86 (1):60–7.PubMedCrossRef Seitz RJ, Roland PE. Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neurol Scand 1992;86 (1):60–7.PubMedCrossRef
82.
Zurück zum Zitat Davis TL, et al. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998;95 (4):1834–9.PubMedCrossRef Davis TL, et al. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998;95 (4):1834–9.PubMedCrossRef
83.
Zurück zum Zitat Hoge RD, et al. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 1999;96 (16):9403–8.PubMedCrossRef Hoge RD, et al. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA 1999;96 (16):9403–8.PubMedCrossRef
84.
Zurück zum Zitat Kim SG, et al. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 1999;41 (6):1152–61.PubMedCrossRef Kim SG, et al. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 1999;41 (6):1152–61.PubMedCrossRef
85.
Zurück zum Zitat Mintun MA, et al. Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 2002;16 (2):531–7.PubMedCrossRef Mintun MA, et al. Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 2002;16 (2):531–7.PubMedCrossRef
86.
Zurück zum Zitat Lin AL, et al. Time-dependent correlation of cerebral blood flow with oxygen metabolism in activated human visual cortex as measured by fMRI. Neuroimage 2009;44 (1):16–22.PubMedCrossRef Lin AL, et al. Time-dependent correlation of cerebral blood flow with oxygen metabolism in activated human visual cortex as measured by fMRI. Neuroimage 2009;44 (1):16–22.PubMedCrossRef
87.
Zurück zum Zitat Jacobs AH, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 2005;46 (12):1948–58.PubMed Jacobs AH, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 2005;46 (12):1948–58.PubMed
88.
Zurück zum Zitat Garlick PB, et al. PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed 1997;10 (3):138–42.PubMedCrossRef Garlick PB, et al. PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed 1997;10 (3):138–42.PubMedCrossRef
89.
Zurück zum Zitat Pichler BJ, et al. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 2008;38 (3):199–208.PubMedCrossRef Pichler BJ, et al. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 2008;38 (3):199–208.PubMedCrossRef
90.
Zurück zum Zitat Handler WB, et al. Simulation of scattering and attenuation of 511 keV photons in a combined PET/field-cycled MRI system. Phys Med Biol 2006;51 (10):2479–91.PubMedCrossRef Handler WB, et al. Simulation of scattering and attenuation of 511 keV photons in a combined PET/field-cycled MRI system. Phys Med Biol 2006;51 (10):2479–91.PubMedCrossRef
Metadaten
Titel
Pre-clinical PET/MR: technological advances and new perspectives in biomedical research
verfasst von
Hans F. Wehrl
Martin S. Judenhofer
Stefan Wiehr
Bernd J. Pichler
Publikationsdatum
01.03.2009
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe Sonderheft 1/2009
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-009-1078-0

Weitere Artikel der Sonderheft 1/2009

European Journal of Nuclear Medicine and Molecular Imaging 1/2009 Zur Ausgabe