Skip to main content
Log in

68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Radiolabeled Arg-Gly-Asp (RGD) and bombesin (BBN) peptide analogs have been extensively investigated for the imaging of tumor integrin αvβ3 and gastrin-releasing peptide receptor (GRPR) expression, respectively. Recently, we designed and synthesized a RGD-BBN heterodimeric peptide from c(RGDyK) and BBN(7–14) through a glutamate linker. The goal of this study was to investigate the dual receptor-targeting property and tumor diagnostic value of RGD-BBN heterodimeric peptide labeled with generator-eluted 68Ga (t1/2 68 min, β+ 89% and EC 11%), 68Ga-NOTA-RGD-BBN.

Methods

RGD-BBN heterodimer was conjugated with 1,4,7-triazacyclononanetriacetic acid (NOTA) and labeled with 68Ga. The dual receptor binding affinity was investigated by a radioligand competition binding assay. The in vitro and in vivo dual receptor targeting of 68Ga-NOTA-RGD-BBN was evaluated and compared with that of 68Ga-NOTA-RGD and 68Ga-NOTA-BBN.

Results

NOTA-RGD-BBN had integrin αvβ3 and GRPR binding affinities comparable to those of the monomeric RGD and BBN, respectively. The dual receptor targeting property of 68Ga-NOTA-RGD-BBN was validated by blocking studies in a PC-3 tumor model. 68Ga-NOTA-RGD-BBN showed higher tumor uptake than 68Ga-NOTA-RGD and 68Ga-NOTA-BBN. 68Ga-NOTA-RGD-BBN can also image tumors with either integrin or GRPR expression.

Conclusion

68Ga-NOTA-RGD-BBN exhibited dual receptor targeting properties both in vitro and in vivo. The favorable characterizations of 68Ga-NOTA-RGD-BBN such as convenient synthesis, high specific activity, and high tumor uptake, warrant its further investigation for clinical cancer imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okarvi SM. Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 2004;24:357–97. doi:10.1002/med.20002.

    Article  PubMed  CAS  Google Scholar 

  2. Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, et al. MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 2004;6:350–9. doi:10.1016/j.mibio.2004.06.004.

    Article  PubMed  Google Scholar 

  3. Li ZB, Chen K, Chen X. 68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression. Eur J Nucl Med Mol Imaging 2008;35:1100–8. doi:10.1007/s00259-007-0692-y.

    Article  PubMed  CAS  Google Scholar 

  4. Wu Z, Li ZB, Cai W, He L, Chin FT, Li F, et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of αvβ3 integrin expression. Eur J Nucl Med Mol Imaging 2007;34:1823–31. doi:10.1007/s00259-007-0427-0.

    Article  PubMed  CAS  Google Scholar 

  5. Liu S, Hsieh WY, Jiang Y, Kim YS, Sreerama SG, Chen X, et al. Evaluation of a 99mTc-labeled cyclic RGD tetramer for noninvasive imaging integrin αvβ3-positive breast cancer. Bioconjug Chem 2007;18:438–46. doi:10.1021/bc0603081.

    Article  PubMed  Google Scholar 

  6. Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of αvβ3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2007;13:6610–6. doi:10.1158/1078-0432.CCR-07-0528.

    Article  PubMed  CAS  Google Scholar 

  7. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res 2006;12:3942–9. doi:10.1158/1078-0432.CCR-06-0266.

    Article  PubMed  CAS  Google Scholar 

  8. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2005;2:e70. doi:10.1371/journal.pmed.0020070.

    Article  PubMed  Google Scholar 

  9. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, et al. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 2008;49:879–86. doi:10.2967/jnumed.107.049452.

    Article  PubMed  Google Scholar 

  10. Cornelio DB, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 2007;18:1457–66. doi:10.1093/annonc/mdm058.

    Article  PubMed  CAS  Google Scholar 

  11. Dimitrakopoulou-Strauss A, Hohenberger P, Haberkorn U, Macke HR, Eisenhut M, Strauss LG. 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: comparison with 18F-FDG. J Nucl Med 2007;48:1245–50. doi:10.2967/jnumed.106.038091.

    Article  PubMed  CAS  Google Scholar 

  12. Van de Wiele C, Phonteyne P, Pauwels P, Goethals I, Van den Broecke R, Cocquyt V, et al. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry. J Nucl Med 2008;49:260–4. doi:10.2967/jnumed.107.047167.

    Article  PubMed  Google Scholar 

  13. Scheffel U, Pomper MG. PET imaging of GRP receptor expression in prostate cancer. J Nucl Med 2004;45:1277–8.

    PubMed  CAS  Google Scholar 

  14. de Visser M, van Weerden WM, de Ridder CM, Reneman S, Melis M, Krenning EP, et al. Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J Nucl Med 2007;48:88–93.

    PubMed  Google Scholar 

  15. Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin αvβ3 targeted radiotracers for tumor imaging. Mol Pharm 2006;3:472–87. doi:10.1021/mp060049x.

    Article  PubMed  CAS  Google Scholar 

  16. Jia B, Liu Z, Shi J, Yu Z, Yang Z, Zhao H, et al. Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconjug Chem 2008;19:201–10. doi:10.1021/bc7002988.

    Article  PubMed  CAS  Google Scholar 

  17. Smith CJ, Volkert WA, Hoffman TJ. Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 2005;32:733–40. doi:10.1016/j.nucmedbio.2005.05.005.

    Article  PubMed  CAS  Google Scholar 

  18. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 2002;62:6146–51.

    PubMed  CAS  Google Scholar 

  19. Dijkgraaf I, Boerman OC, Oyen WJ, Corstens FH, Gotthardt M. Development and application of peptide-based radiopharmaceuticals. Anticancer Agents Med Chem 2007;7:543–51.

    PubMed  CAS  Google Scholar 

  20. Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med 2007;48:1162–71. doi:10.2967/jnumed.107.039859.

    Article  PubMed  CAS  Google Scholar 

  21. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. microPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 2005;46:1707–18.

    PubMed  CAS  Google Scholar 

  22. Li ZB, Wu Z, Chen K, Ryu EK, Chen X. 18F-Labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 2008;49:453–61. doi:10.2967/jnumed.107.048009.

    Article  PubMed  CAS  Google Scholar 

  23. Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumor integrin αvβ3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006;8:226–36. doi:10.1007/s11307-006-0041-8.

    Article  PubMed  Google Scholar 

  24. Liu Z, Yan Y, Chin FT, Wang F, Chen X. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 2009;52:425–32. doi:10.1021/jm801285t.

    Article  PubMed  CAS  Google Scholar 

  25. Fani M, Andre JP, Maecke HR. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 2008;3:67–77. doi:10.1002/cmmi.232.

    Article  PubMed  Google Scholar 

  26. Lacroix M. MDA-MB-435 cells are from melanoma, not from breast cancer. Cancer Chemother Pharmacol 2009;63:567. doi:10.1007/s00280-008-0776-9.

    Article  PubMed  Google Scholar 

  27. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 melanoma cells – a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 2007;104:13–9. doi:10.1007/s10549-006-9392-8.

    Article  PubMed  Google Scholar 

  28. Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4–18F-fluorobenzamido) ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med 2006;47:1172–80.

    PubMed  CAS  Google Scholar 

  29. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 2006;47:113–21.

    PubMed  CAS  Google Scholar 

  30. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 2006;66:9673–81. doi:10.1158/0008-5472.CAN-06-1480.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang X, Cai W, Cao F, Schreibmann E, Wu Y, Wu JC, et al. 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 2006;47:492–501.

    PubMed  CAS  Google Scholar 

  32. Chen X, Park R, Hou Y, Tohme M, Shahinian AH, Bading JR, et al. microPET and autoradiographic imaging of GRP receptor expression with 64Cu-DOTA-[Lys3]bombesin in human prostate adenocarcinoma xenografts. J Nucl Med 2004;45:1390–7.

    PubMed  CAS  Google Scholar 

  33. Al-Nahhas A, Win Z, Szyszko T, Singh A, Khan S, Rubello D. What can gallium-68 PET add to receptor and molecular imaging? Eur J Nucl Med Mol Imaging 2007;34:1897–901. doi:10.1007/s00259-007-0568-1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Cancer Institute (NCI R01 CA119053, R21 CA121842, P50 CA114747 and U54 CA119367). We thank Drs. Shuanglong Liu and Kai Chen for excellent technical support. Z. Liu would like to acknowledge the China Scholarship Council (CSC) for partial financial support during his study at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Suppl. Fig. 1

Immunofluorescent staining of gastrin releasing peptide receptor (GRPR), human integrin αvβv, and murine integrin β3 for normal organs of nude mice (DOC 25189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Niu, G., Wang, F. et al. 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging 36, 1483–1494 (2009). https://doi.org/10.1007/s00259-009-1123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1123-z

Keywords

Navigation