Skip to main content
Log in

Assessment of the arterial input function for estimation of coronary flow reserve by single photon emission computed tomography: comparison of two different approaches

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Attempts to estimate coronary flow reserve (CFR) with single photon emission computed tomography (SPECT) tracers have been recently made. We compared two different methods for the estimation of CFR by SPECT imaging.

Methods

Fourteen patients with coronary artery disease underwent dipyridamole 99mTc-sestamibi SPECT and intracoronary Doppler within 5 days. Myocardial blood flow (MBF) was estimated by measurement of first transit counts in the right pulmonary artery (PA) and left ventricular (LV) chamber, and myocardial counts from SPECT images. Estimated CFR was expressed as the ratio of stress MBF to rest MBF.

Results

Rest and stress MBF obtained using first transit counts from PA were higher compared to that from LV chamber (rest: 1.05 ± 0.38 vs 0.87 ± 0.34 counts/pixel per s, respectively, p < 0.01 and stress: 1.34 ± 0.45 vs 0.91 ± 0.20 counts/pixel per s, respectively, p < 0.05). In the study vessels, CFR by Doppler was 1.39 ± 0.42, and SPECT CFR obtained using first transit counts from PA and LV chamber were 1.36 ± 0.43 and 1.16 ± 0.39, respectively (p across categories NS). A significant relationship between SPECT CFR obtained using first transit counts from PA and CFR by Doppler was found (r = 0.85, p < 0.001). No relationship between SPECT CFR obtained using first transit counts from LV chamber and CFR by intracoronary Doppler was observed (r = 0.43, p = NS).

Conclusion

SPECT-estimated CFR obtained using first transit counts from right PA is more accurate and correlates better with the results of intracoronary Doppler than estimated CFR obtained using arterial input function from LV chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nicolai E, Cuocolo A, Pace L, Nappi A, Sullo P, Cardei S, et al. Adenosine coronary vasodilatation quantitative technetium 99m methoxy isobutyl isonitrile myocardial tomography in the identification and localization of coronary artery disease. J Nucl Cardiol 1996;3:9–17. doi:10.1016/S1071-3581(96)90019-7.

    Article  CAS  PubMed  Google Scholar 

  2. Miller DD, Younis LT, Chaitman BR, Stratmann H. Diagnostic accuracy of dipyridamole technetium 99m-labelled sestamibi myocardial tomography for detection of coronary artery disease. J Nucl Cardiol 1997;4:18–24. doi:10.1016/S1071-3581(97)90045-3.

    Article  CAS  PubMed  Google Scholar 

  3. Heller GV, Herman SD, Travin MI, Baron JI, Santos-Ocampo C, McClellan JR. Independent prognostic value of intravenous dipyridamole with technetium-99m sestamibi tomographic imaging in predicting cardiac events and cardiac-related hospital admissions. J Am Coll Cardiol 1995;26:1202–8. doi:10.1016/0735-1097(95)00329-0.

    Article  CAS  PubMed  Google Scholar 

  4. Stratmann HG, Tamesis BR, Younis LT, Wittry MD, Amato M, Miller DD. Prognostic value of predischarge dipyridamole technetium 99m sestamibi myocardial tomography in medically treated patients with unstable angina. Am Heart J 1995;130:734–40. doi:10.1016/0002-8703(95)90071-3.

    Article  CAS  PubMed  Google Scholar 

  5. Garcia EV. Quantitative myocardial perfusion single-photon emission computed tomographic imaging: quo vadis? J Nucl Cardiol 1994;1:83–93. doi:10.1007/BF02940015.

    Article  CAS  PubMed  Google Scholar 

  6. Germano G. Technical aspects of myocardial SPECT imaging. J Nucl Med 2001;42:1499–507.

    CAS  PubMed  Google Scholar 

  7. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987;76:1183–9.

    CAS  PubMed  Google Scholar 

  8. Hoffman JI. A critical view of coronary reserve. Circulation 1987;75:I6–11.

    CAS  PubMed  Google Scholar 

  9. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87–94. doi:10.1016/0002-9149(74)90743-7.

    Article  CAS  PubMed  Google Scholar 

  10. Baller D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J. Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation 1999;99:2871–5.

    CAS  PubMed  Google Scholar 

  11. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992;85:1899–911.

    CAS  PubMed  Google Scholar 

  12. Aude YW, Garza L. How to prevent unnecessary coronary interventions: identifying lesions responsible for ischemia in the cath lab. Curr Opin Cardiol 2003;18:394–9. doi:10.1097/00001573-200309000-00012.

    Article  PubMed  Google Scholar 

  13. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation 1984;70:724–33.

    CAS  PubMed  Google Scholar 

  14. Araujo LI, Lammertsma AA, Rhodes CG, McFalls EO, Iida H, Rechavia E, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991;83:875–85.

    CAS  PubMed  Google Scholar 

  15. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988;78:104–15.

    CAS  PubMed  Google Scholar 

  16. Storto G, Cirillo P, Vicario ML, Pellegrino T, Sorrentino AR, Petretta M, et al. Estimation of coronary flow reserve by Tc-99m sestamibi imaging in patients with coronary artery disease: comparison with the results of intracoronary Doppler technique. J Nucl Cardiol 2004;11:682–8. doi:10.1016/j.nuclcard.2004.08.007.

    Article  PubMed  Google Scholar 

  17. Sugihara H, Yonekura Y, Kataoka K, Fukai D, Kitamura N, Taniguchi Y. Estimation of coronary flow reserve with the use of dynamic planar and SPECT images of Tc-99m tetrofosmin. J Nucl Cardiol 2001;8:575–9. doi:10.1067/mnc.2001.115934.

    Article  CAS  PubMed  Google Scholar 

  18. Taki J, Fujino S, Nakajima K, Matsunari I, Okazaki H, Saga T, et al. (99m)Tc-sestamibi retention characteristics during pharmacologic hyperemia in human myocardium: comparison with coronary flow reserve measured by Doppler flowire. J Nucl Med 2001;42:1457–63.

    CAS  PubMed  Google Scholar 

  19. Ito Y, Katoh C, Noriyasu K, Kuge Y, Furuyama H, Morita K, et al. Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: comparison with the results of [15O]H2O PET. Eur J Nucl Med Mol Imaging 2003;30:281–7.

    CAS  PubMed  Google Scholar 

  20. Brunken RC. Challenges for measurement of myocardial perfusion and perfusion reserve by SPECT imaging. J Nucl Cardiol 2007;14:145–9. doi:10.1016/j.nuclcard.2007.01.034.

    Article  PubMed  Google Scholar 

  21. Ragosta M. The clinical assessment of coronary flow reserve in patients with coronary artery disease. J Nucl Cardiol 2004;11:651–5. doi:10.1016/j.nuclcard.2004.09.010.

    Article  PubMed  Google Scholar 

  22. Gullberg GT, Di Bella EV, Sinusas AJ. Estimation of coronary flow reserve: can SPECT compete with other modalities? J Nucl Cardiol 2001;8:620–5. doi:10.1067/mnc.2001.118121.

    Article  CAS  PubMed  Google Scholar 

  23. Vicario ML, Cirillo L, Storto G, Pellegrino T, Ragone N, Fontanella L, et al. Influence of risk factors on coronary flow reserve in patients with 1-vessel coronary artery disease. J Nucl Med 2005;46:1438–43.

    PubMed  Google Scholar 

  24. Pellegrino T, Storto G, Filardi PP, Sorrentino AR, Silvestro A, Petretta M, et al. Relationship between brachial artery flow-mediated dilation and coronary flow reserve in patients with peripheral artery disease. J Nucl Med 2005;46:1997–2002.

    PubMed  Google Scholar 

  25. Storto G, Pellegrino T, Sorrentino AR, Luongo L, Petretta M, Cuocolo A. Estimation of coronary flow reserve by sestamibi imaging in type 2 diabetic patients with normal coronary arteries. J Nucl Cardiol 2007;14:194–9. doi:10.1016/j.nuclcard.2006.12.327.

    Article  PubMed  Google Scholar 

  26. Perrone-Filardi P, Cuocolo A, Brevetti G, Silvestro A, Storto G, Dellegrottaglie S, et al. Relation of brachial artery flow-mediated vasodilation to significant coronary artery disease in patients with peripheral arterial disease. Am J Cardiol 2005;96:1337–41. doi:10.1016/j.amjcard.2005.06.084.

    Article  PubMed  Google Scholar 

  27. Storto G, Sorrentino AR, Pellegrino T, Liuzzi R, Petretta M, Cuocolo A. Assessment of coronary flow reserve by sestamibi imaging in patients with typical chest pain and normal coronary arteries. Eur J Nucl Med Mol Imaging 2007;34:1156–61. doi:10.1007/s00259-006-0333-x.

    Article  PubMed  Google Scholar 

  28. Palmieri V, Storto G, Arezzi E, Pellegrino T, Mancini M, Di Minno G, et al. Relations of left ventricular mass and systolic function to endothelial function and coronary flow reserve in healthy, new discovered hypertensive subjects. J Hum Hypertens 2005;19:941–50. doi:10.1038/sj.jhh.1001921.

    Article  CAS  PubMed  Google Scholar 

  29. Petretta M, Soricelli A, Storto G, Cuocolo A. Assessment of coronary flow reserve using single photon emission computed tomography with technetium 99m-labeled tracers. J Nucl Cardiol 2008;15:456–65. doi:10.1016/j.nuclcard.2008.03.008.

    Article  PubMed  Google Scholar 

  30. Lette J, Tatum JL, Fraser S, Miller DD, Waters DD, Heller G, et al. Safety of dipyridamole testing in 73,806 patients: the Multicenter Dipyridamole Safety Study. J Nucl Cardiol 1995;2:3–17. doi:10.1016/S1071-3581(05)80003-0.

    Article  CAS  PubMed  Google Scholar 

  31. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.

    CAS  PubMed  Google Scholar 

  32. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 1974;34:48–55. doi:10.1016/0002-9149(74)90092-7.

    Article  CAS  PubMed  Google Scholar 

  33. Marcus ML, Wilson RF, White CW. Methods of measurement of myocardial blood flow in patients: a critical review. Circulation 1987;76:245–53.

    CAS  PubMed  Google Scholar 

  34. Hoffman JI. Problems of coronary flow reserve. Ann Biomed Eng 2000;28:884–96. doi:10.1114/1.1308503.

    Article  CAS  PubMed  Google Scholar 

  35. De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 1994;89:1013–22.

    PubMed  Google Scholar 

  36. Saraste M, Koskenvuo J, Knuuti J, Toikka J, Laine H, Niemi P, et al. Coronary flow reserve measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol 2001;21:114–22. doi:10.1046/j.1365-2281.2001.00296.x.

    Article  CAS  PubMed  Google Scholar 

  37. Germain P, Roul G, Baruthio J, Jahn C, Coulbois PM, Dumitresco B, et al. Myocardial flow reserve parametric map, assessed by first-pass MRI compartmental analysis at the chronic stage of infarction. J Magn Reson Imaging 2001;13:352–60. doi:10.1002/jmri.1050.

    Article  CAS  PubMed  Google Scholar 

  38. Koskenvuo JW, Sakuma H, Niemi P, Toikka JO, Knuuti J, Laine H, et al. Global myocardial blood flow reserve measurements by MRI and PET are comparable. J Magn Reson Imaging 2001;13:361–6. doi:10.1002/jmri.1051.

    Article  CAS  PubMed  Google Scholar 

  39. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989;14:639–52.

    CAS  PubMed  Google Scholar 

  40. Joye JD, Schulman DS. Clinical application of coronary flow reserve using an intracoronary Doppler guide wire. Cardiol Clin 1997;15:101–29. doi:10.1016/S0733-8651(05)70321-0.

    Article  CAS  PubMed  Google Scholar 

  41. Labovitz AJ, Anthonis DM, Cravens TL, Kern MJ. Validation of volumetric flow measurements by means of a Doppler-tipped coronary angioplasty guide wire. Am Heart J 1993;126:1456–61. doi:10.1016/0002-8703(93)90545-K.

    Article  CAS  PubMed  Google Scholar 

  42. Kern MJ, Deligonul U, Tatineni S, Serota H, Aguirre F, Hilton TC. Intravenous adenosine: continuous infusion and low dose bolus administration for determination of coronary vasodilator reserve in patients with and without coronary artery disease. J Am Coll Cardiol 1991;18:718–29.

    Article  CAS  PubMed  Google Scholar 

  43. Rossen JD, Quillen JE, Lopez AG, Stenberg RG, Talman CL, Winniford MD. Comparison of coronary vasodilatation with intravenous dipyridamole and adenosine. J Am Coll Cardiol 1991;18:485–91.

    CAS  PubMed  Google Scholar 

  44. Ogilby JD, Iskandrian AS, Untereker WJ, Heo J, Nguyen TN, Mercuro J. Effect of intravenous adenosine infusion on myocardial perfusion and function. Hemodynamic/angiographic and scintigraphic study. Circulation 1992;86:887–95.

    CAS  PubMed  Google Scholar 

  45. Masuda D, Nohara R, Tamaki N, Hosokawa R, Inada H, Hikai T, et al. Evaluation of coronary blood flow reserve by 13 N-NH3 positron emission computed tomography (PET) with dipyridamole in the treatment of hypertension with the ACE inhibitor (Cilazapril). Ann Nucl Med 2000;14:353–60. doi:10.1007/BF02988695.

    Article  CAS  PubMed  Google Scholar 

  46. Yokoyama I, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Omata M. Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation 1996;94:3232–8.

    CAS  PubMed  Google Scholar 

  47. Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765–74. doi:10.1007/s00259-007-0478-2.

    Article  PubMed  Google Scholar 

  48. Lautamäki R, George RT, Kitagawa K, Higuchi T, Merrill J, Voicu C, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging 2009;36:576–86. doi:10.1007/s00259-008-0972-1.

    Article  PubMed  CAS  Google Scholar 

  49. Castell-Conesa J, Candell-Riera J. Estimation of coronary flow reserve by SPECT: myth or reality? Eur J Nucl Med Mol Imaging 2007;34:1152–5. doi:10.1007/s00259-007-0415-4.

    Article  CAS  PubMed  Google Scholar 

  50. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30:359–66.

    CAS  PubMed  Google Scholar 

  51. Santana CA, Folks RD, Garcia EV, Verdes L, Sanyal R, Hainer J, et al. Quantitative (82)Rb PET/CT: development and validation of myocardial perfusion database. J Nucl Med 2007;48:1122–8. doi:10.2967/jnumed.107.039750.

    Article  PubMed  Google Scholar 

  52. Katoh C, Morita K, Shiga T, Kubo N, Nakada K, Tamaki N. Improvement of algorithm for quantification of regional myocardial blood flow using 15O-water with PET. J Nucl Med 2004;45:1908–16.

    PubMed  Google Scholar 

  53. Choi Y, Hawkins RA, Huang SC, Gambhir SS, Brunken RC, Phelps ME, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 1991;32:733–8.

    CAS  PubMed  Google Scholar 

  54. O’Rourke MF, Yaginuma T, Avolio AP. Physiological and pathophysiological implications of ventricular/vascular coupling. Ann Biomed Eng 1984;12:119–34. doi:10.1007/BF02584226.

    Article  PubMed  Google Scholar 

  55. Nakamura M, Wada S, Yamaguchi T. Computational analysis of blood flow in an integrated model of the left ventricle and the aorta. J Biomech Eng 2006;128:837–43. doi:10.1115/1.2400864.

    Article  PubMed  Google Scholar 

  56. Perlini S, Soldà PL, Piepoli M, Calciati A, Paro M, Marchetti G, et al. Time course of pressure and flow in ascending aorta during ejection. Int J Cardiol 1991;30:169–79. doi:10.1016/0167-5273(91)90092-4.

    Article  CAS  PubMed  Google Scholar 

  57. Long Q, Merrifield R, Xu XY, Kilner P, Firmin DN, G-Z Y. Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging. Proc Inst Mech Eng [H] 2008;222:475–85. doi:10.1243/09544119JEIM310.

    CAS  Google Scholar 

  58. McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve. Influence of heart rate, arterial pressure, and ventricular preload. Circulation 1990;81:1319–30.

    CAS  PubMed  Google Scholar 

  59. Scherhag AW, Pfleger S, de Mey C, Schreckenberger AB, Staedt U, Heene DL. Continuous measurement of hemodynamic alterations during pharmacologic cardiovascular stress using automated impedance cardiography. J Clin Pharmacol 1997;37(Suppl):21S–8S. doi:10.1177/009127009703700118.

    Article  CAS  PubMed  Google Scholar 

  60. Varga A, Garcia MA, Picano E, International Stress Echo Complication Registry. Safety of stress echocardiography (from the International Stress Echo Complication Registry). Am J Cardiol 2006;98:541–3. doi:10.1016/j.amjcard.2006.02.064.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cuocolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storto, G., Soricelli, A., Pellegrino, T. et al. Assessment of the arterial input function for estimation of coronary flow reserve by single photon emission computed tomography: comparison of two different approaches. Eur J Nucl Med Mol Imaging 36, 2034–2041 (2009). https://doi.org/10.1007/s00259-009-1186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1186-x

Keywords

Navigation