Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 11/2010

01.11.2010 | Review Article

PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques

verfasst von: Habib Zaidi, Issam El Naqa

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 11/2010

Einloggen, um Zugang zu erhalten

Abstract

Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed.
Fußnoten
1
The first-order derivative suppresses stretching and makes the contour behave like an elastic string. The second-order derivative suppresses bending and makes the model behave like a rigid rod.
 
Literatur
1.
2.
Zurück zum Zitat Hasegawa B, Zaidi H. Dual-modality imaging: more than the sum of its components. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 35–81.CrossRef Hasegawa B, Zaidi H. Dual-modality imaging: more than the sum of its components. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 35–81.CrossRef
3.
Zurück zum Zitat Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004;4:737–47.PubMedCrossRef Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer 2004;4:737–47.PubMedCrossRef
4.
Zurück zum Zitat Fenwick JD, Tomé WA, Soisson ET, Mehta MP, Rock Mackie T. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 2006;16:199–208.PubMedCrossRef Fenwick JD, Tomé WA, Soisson ET, Mehta MP, Rock Mackie T. Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 2006;16:199–208.PubMedCrossRef
5.
Zurück zum Zitat Ling C, Zhang P, Archambault Y, Bocanek J, Tang G, Losasso T. Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys 2008;72:575–81.PubMed Ling C, Zhang P, Archambault Y, Bocanek J, Tang G, Losasso T. Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys 2008;72:575–81.PubMed
6.
Zurück zum Zitat Jäkel O, Karger CP, Debus J. The future of heavy ion radiotherapy. Med Phys 2008;35:5653–63.PubMedCrossRef Jäkel O, Karger CP, Debus J. The future of heavy ion radiotherapy. Med Phys 2008;35:5653–63.PubMedCrossRef
7.
Zurück zum Zitat ICRU. Prescribing, recording and reporting photon beam therapy. ICRU Report 62. Washington: International Commission on Radiation Units and Measurements; 1999. ICRU. Prescribing, recording and reporting photon beam therapy. ICRU Report 62. Washington: International Commission on Radiation Units and Measurements; 1999.
8.
Zurück zum Zitat Austin-Seymour M, Chen GT, Rosenman J, Michalski J, Lindsley K, Goitein M. Tumor and target delineation: current research and future challenges. Int J Radiat Oncol Biol Phys 1995;33:1041–52.PubMed Austin-Seymour M, Chen GT, Rosenman J, Michalski J, Lindsley K, Goitein M. Tumor and target delineation: current research and future challenges. Int J Radiat Oncol Biol Phys 1995;33:1041–52.PubMed
10.
Zurück zum Zitat Papiez L, Langer M. On probabilistically defined margins in radiation therapy. Phys Med Biol 2006;51:3921–39.PubMedCrossRef Papiez L, Langer M. On probabilistically defined margins in radiation therapy. Phys Med Biol 2006;51:3921–39.PubMedCrossRef
11.
Zurück zum Zitat Khoo VS, Adams EJ, Saran F, Bedford JL, Perks JR, Warrington AP, et al. A comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas. Int J Radiat Oncol Biol Phys 2000;46:1309–17.PubMed Khoo VS, Adams EJ, Saran F, Bedford JL, Perks JR, Warrington AP, et al. A comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas. Int J Radiat Oncol Biol Phys 2000;46:1309–17.PubMed
12.
Zurück zum Zitat Chaney E, Ibbott G, Hendee WR. Methods for image segmentation should be standardized and calibrated. Med Phys 2005;32:3507–10.PubMedCrossRef Chaney E, Ibbott G, Hendee WR. Methods for image segmentation should be standardized and calibrated. Med Phys 2005;32:3507–10.PubMedCrossRef
13.
Zurück zum Zitat Ling C, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551–60.PubMedCrossRef Ling C, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551–60.PubMedCrossRef
14.
Zurück zum Zitat Zaidi H, Alavi A. Current trends in PET and combined (PET/CT and PET/MR) systems design. PET Clin 2007;2:109–23.CrossRef Zaidi H, Alavi A. Current trends in PET and combined (PET/CT and PET/MR) systems design. PET Clin 2007;2:109–23.CrossRef
15.
Zurück zum Zitat Chapman JD, Bradley JD, Eary JF, Haubner R, Larson SM, Michalski JM, et al. Molecular (functional) imaging for radiotherapy applications: an RTOG symposium. Int J Radiat Oncol Biol Phys 2003;55:294–301.PubMed Chapman JD, Bradley JD, Eary JF, Haubner R, Larson SM, Michalski JM, et al. Molecular (functional) imaging for radiotherapy applications: an RTOG symposium. Int J Radiat Oncol Biol Phys 2003;55:294–301.PubMed
16.
Zurück zum Zitat Grégoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48:68S–77.PubMed Grégoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: a new standard? J Nucl Med 2007;48:68S–77.PubMed
17.
Zurück zum Zitat Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–99.PubMedCrossRef Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–99.PubMedCrossRef
18.
Zurück zum Zitat Lecchi M, Fossati P, Elisei F, Orecchia R, Lucignani G. Current concepts on imaging in radiotherapy. Eur J Nucl Med Mol Imaging 2008;35:821–37.PubMedCrossRef Lecchi M, Fossati P, Elisei F, Orecchia R, Lucignani G. Current concepts on imaging in radiotherapy. Eur J Nucl Med Mol Imaging 2008;35:821–37.PubMedCrossRef
19.
Zurück zum Zitat Mah D, Chen CC. Image guidance in radiation oncology treatment planning: the role of imaging technologies on the planning process. Semin Nucl Med 2008;38:114–8.PubMedCrossRef Mah D, Chen CC. Image guidance in radiation oncology treatment planning: the role of imaging technologies on the planning process. Semin Nucl Med 2008;38:114–8.PubMedCrossRef
20.
Zurück zum Zitat Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 2006;50:4–14.PubMed Messa C, Di Muzio N, Picchio M, Gilardi MC, Bettinardi V, Fazio F. PET/CT and radiotherapy. Q J Nucl Med Mol Imaging 2006;50:4–14.PubMed
21.
Zurück zum Zitat Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009;16:1108–33.PubMedCrossRef Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009;16:1108–33.PubMedCrossRef
22.
Zurück zum Zitat Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001;5:127–42.PubMedCrossRef Olabarriaga SD, Smeulders AW. Interaction in the segmentation of medical images: a survey. Med Image Anal 2001;5:127–42.PubMedCrossRef
23.
Zurück zum Zitat Udupa JK, Saha PK. Fuzzy connectedness and image segmentation. Proc IEEE 2003;91:1649–69.CrossRef Udupa JK, Saha PK. Fuzzy connectedness and image segmentation. Proc IEEE 2003;91:1649–69.CrossRef
24.
Zurück zum Zitat Boudraa A, Zaidi H. Image segmentation techniques in nuclear medicine imaging. In: Zaidi H, editor. Quantitative analysis of nuclear medicine images. New York: Springer; 2006. p. 308–57.CrossRef Boudraa A, Zaidi H. Image segmentation techniques in nuclear medicine imaging. In: Zaidi H, editor. Quantitative analysis of nuclear medicine images. New York: Springer; 2006. p. 308–57.CrossRef
25.
Zurück zum Zitat Zaidi H. Medical image segmentation: quo vadis. Comput Methods Programs Biomed 2006;84:63–7.PubMedCrossRef Zaidi H. Medical image segmentation: quo vadis. Comput Methods Programs Biomed 2006;84:63–7.PubMedCrossRef
26.
Zurück zum Zitat van Baardwijk A, Baumert BG, Bosmans G, van Kroonenburgh M, Stroobants S, Gregoire V, et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 2006;32:245–60.PubMedCrossRef van Baardwijk A, Baumert BG, Bosmans G, van Kroonenburgh M, Stroobants S, Gregoire V, et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 2006;32:245–60.PubMedCrossRef
27.
Zurück zum Zitat Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57:125–34.PubMedCrossRef Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007;57:125–34.PubMedCrossRef
28.
Zurück zum Zitat Graves EE, Quon A, Loo Jr BW. RT_Image: an open-source tool for investigating PET in radiation oncology. Technol Cancer Res Treat 2007;6:111–21.PubMed Graves EE, Quon A, Loo Jr BW. RT_Image: an open-source tool for investigating PET in radiation oncology. Technol Cancer Res Treat 2007;6:111–21.PubMed
29.
Zurück zum Zitat Ahn PH, Garg MK. Positron emission tomography/computed tomography for target delineation in head and neck cancers. Semin Nucl Med 2008;38:141–8.PubMedCrossRef Ahn PH, Garg MK. Positron emission tomography/computed tomography for target delineation in head and neck cancers. Semin Nucl Med 2008;38:141–8.PubMedCrossRef
30.
Zurück zum Zitat Rahn AN, Baum RP, Adamietz IA, Adams S, Sengupta S, Mose S, et al. Value of 18F fluorodeoxyglucose positron emission tomography in radiotherapy planning of head-neck tumors. Strahlenther Onkol 1998;174:358–64. German.PubMedCrossRef Rahn AN, Baum RP, Adamietz IA, Adams S, Sengupta S, Mose S, et al. Value of 18F fluorodeoxyglucose positron emission tomography in radiotherapy planning of head-neck tumors. Strahlenther Onkol 1998;174:358–64. German.PubMedCrossRef
31.
Zurück zum Zitat Munley MT, Marks LB, Scarfone C, Sibley GS, Patz Jr EF, Turkington TG, et al. Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 1999;23:105–14.PubMedCrossRef Munley MT, Marks LB, Scarfone C, Sibley GS, Patz Jr EF, Turkington TG, et al. Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 1999;23:105–14.PubMedCrossRef
32.
Zurück zum Zitat Gross MW, Weber WA, Feldmann HJ, Bartenstein P, Schwaiger M, Molls M. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 1998;41:989–95.PubMed Gross MW, Weber WA, Feldmann HJ, Bartenstein P, Schwaiger M, Molls M. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 1998;41:989–95.PubMed
33.
Zurück zum Zitat Kiffer JD, Berlangieri SU, Scott AM, Quong G, Feigen M, Schumer W, et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 1998;19:167–77.PubMedCrossRef Kiffer JD, Berlangieri SU, Scott AM, Quong G, Feigen M, Schumer W, et al. The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 1998;19:167–77.PubMedCrossRef
34.
Zurück zum Zitat Scarfone C, Jaszczak RJ, Gilland DR, Greer KL, Munley MT, Marks LB, et al. Quantitative pulmonary single photon emission computed tomography for radiotherapy applications. Med Phys 1999;26:1579–88.PubMedCrossRef Scarfone C, Jaszczak RJ, Gilland DR, Greer KL, Munley MT, Marks LB, et al. Quantitative pulmonary single photon emission computed tomography for radiotherapy applications. Med Phys 1999;26:1579–88.PubMedCrossRef
35.
Zurück zum Zitat Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRef Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.PubMedCrossRef
36.
Zurück zum Zitat Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of 18F-fluoro-2-deoxy–glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000;55:317–24.PubMedCrossRef Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, et al. The impact of 18F-fluoro-2-deoxy–glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000;55:317–24.PubMedCrossRef
37.
Zurück zum Zitat Levivier M, Wikier D, Goldman S, David P, Metens T, Massager N, et al. Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors. Technical note. J Neurosurg 2000;93 Suppl 3:233–8.PubMed Levivier M, Wikier D, Goldman S, David P, Metens T, Massager N, et al. Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors. Technical note. J Neurosurg 2000;93 Suppl 3:233–8.PubMed
38.
Zurück zum Zitat Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.PubMed Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.PubMed
39.
Zurück zum Zitat Paulino AC, Thorstad WL, Fox T. Role of fusion in radiotherapy treatment planning. Semin Nucl Med 2003;33:238–43.PubMedCrossRef Paulino AC, Thorstad WL, Fox T. Role of fusion in radiotherapy treatment planning. Semin Nucl Med 2003;33:238–43.PubMedCrossRef
40.
Zurück zum Zitat Scarfone C, Lavely WC, Cmelak AJ, Delbeke D, Martin WH, Billheimer D, et al. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 2004;45:543–52.PubMed Scarfone C, Lavely WC, Cmelak AJ, Delbeke D, Martin WH, Billheimer D, et al. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 2004;45:543–52.PubMed
41.
Zurück zum Zitat Yap JT, Carney JP, Hall NC, Townsend DW. Image-guided cancer therapy using PET/CT. Cancer J 2004;10:221–33.PubMedCrossRef Yap JT, Carney JP, Hall NC, Townsend DW. Image-guided cancer therapy using PET/CT. Cancer J 2004;10:221–33.PubMedCrossRef
42.
Zurück zum Zitat Bradley JD, Perez CA, Dehdashti F, Siegel BA. Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 2004;45 Suppl 1:96S–101.PubMed Bradley JD, Perez CA, Dehdashti F, Siegel BA. Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 2004;45 Suppl 1:96S–101.PubMed
43.
Zurück zum Zitat Brunetti J, Caggiano A, Rosenbluth B, Vialotti C. Technical aspects of positron emission tomography/computed tomography fusion planning. Semin Nucl Med 2008;38:129–36.PubMedCrossRef Brunetti J, Caggiano A, Rosenbluth B, Vialotti C. Technical aspects of positron emission tomography/computed tomography fusion planning. Semin Nucl Med 2008;38:129–36.PubMedCrossRef
45.
Zurück zum Zitat Nestle U, Weber W, Hentschel M, Grosu A-L. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54:R1–25.PubMedCrossRef Nestle U, Weber W, Hentschel M, Grosu A-L. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54:R1–25.PubMedCrossRef
46.
Zurück zum Zitat Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin Nucl Med 2008;38:137–40.PubMedCrossRef Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin Nucl Med 2008;38:137–40.PubMedCrossRef
47.
Zurück zum Zitat Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48:78S–88.PubMed Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 2007;48:78S–88.PubMed
48.
Zurück zum Zitat Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59:78–86.PubMed Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59:78–86.PubMed
49.
Zurück zum Zitat Xing L, Siebers J, Keall P. Computational challenges for image-guided radiation therapy: framework and current research. Semin Radiat Oncol 2007;17:245–57.PubMedCrossRef Xing L, Siebers J, Keall P. Computational challenges for image-guided radiation therapy: framework and current research. Semin Radiat Oncol 2007;17:245–57.PubMedCrossRef
50.
Zurück zum Zitat Stroom J, Blaauwgeers H, van Baardwijk A, Boersma L, Lebesque J, Theuws J, et al. Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 2007;69:267–75.PubMed Stroom J, Blaauwgeers H, van Baardwijk A, Boersma L, Lebesque J, Theuws J, et al. Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 2007;69:267–75.PubMed
51.
Zurück zum Zitat Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003;55:1381–93.PubMed Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003;55:1381–93.PubMed
52.
Zurück zum Zitat Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209–25.PubMedCrossRef Nestle U, Kremp S, Grosu AL. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006;81:209–25.PubMedCrossRef
53.
Zurück zum Zitat Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:339–44.PubMed Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:339–44.PubMed
54.
Zurück zum Zitat Kalff V, Hicks RJ, MacManus MP, Binns DS, McKenzie AF, Ware RE, et al. Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J Clin Oncol 2001;19:111–8.PubMed Kalff V, Hicks RJ, MacManus MP, Binns DS, McKenzie AF, Ware RE, et al. Clinical impact of (18)F fluorodeoxyglucose positron emission tomography in patients with non-small-cell lung cancer: a prospective study. J Clin Oncol 2001;19:111–8.PubMed
55.
Zurück zum Zitat Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51:923–31.PubMed Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51:923–31.PubMed
56.
Zurück zum Zitat Fox JL, Rengan R, O’Meara W, Yorke E, Erdi Y, Nehmeh S, et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 2005;62:70–5.PubMedCrossRef Fox JL, Rengan R, O’Meara W, Yorke E, Erdi Y, Nehmeh S, et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys 2005;62:70–5.PubMedCrossRef
57.
Zurück zum Zitat van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68:771–8.PubMed van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68:771–8.PubMed
58.
Zurück zum Zitat Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp LJ, Comans EFI, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 2006;64:435–48.PubMed Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp LJ, Comans EFI, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 2006;64:435–48.PubMed
59.
Zurück zum Zitat Sovik A, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 2009;73:650–8.PubMed Sovik A, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 2009;73:650–8.PubMed
60.
Zurück zum Zitat Basu S. Selecting the optimal image segmentation strategy in the era of multitracer multimodality imaging: a critical step for image-guided radiation therapy. Eur J Nucl Med Mol Imaging 2009;36:180–1.PubMedCrossRef Basu S. Selecting the optimal image segmentation strategy in the era of multitracer multimodality imaging: a critical step for image-guided radiation therapy. Eur J Nucl Med Mol Imaging 2009;36:180–1.PubMedCrossRef
61.
Zurück zum Zitat Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.PubMedCrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.PubMedCrossRef
62.
Zurück zum Zitat Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin 2007;2:235–49.CrossRef Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin 2007;2:235–49.CrossRef
63.
Zurück zum Zitat Rahmim A, Rousset O, Zaidi H. Strategies for motion tracking and correction in PET. PET Clin 2007;2:251–66.CrossRef Rahmim A, Rousset O, Zaidi H. Strategies for motion tracking and correction in PET. PET Clin 2007;2:251–66.CrossRef
64.
Zurück zum Zitat Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008;38:167–76.PubMedCrossRef Nehmeh SA, Erdi YE. Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 2008;38:167–76.PubMedCrossRef
65.
Zurück zum Zitat Li T, Thorndyke B, Schreibmann E, Yang Y, Xing L. Model-based image reconstruction for four-dimensional PET. Med Phys 2006;33:1288–98.PubMedCrossRef Li T, Thorndyke B, Schreibmann E, Yang Y, Xing L. Model-based image reconstruction for four-dimensional PET. Med Phys 2006;33:1288–98.PubMedCrossRef
66.
Zurück zum Zitat Qiao F, Pan T, Clark J, John W, Mawlawi O. Joint model of motion and anatomy for PET image reconstruction. Med Phys 2007;34:4626–39.PubMedCrossRef Qiao F, Pan T, Clark J, John W, Mawlawi O. Joint model of motion and anatomy for PET image reconstruction. Med Phys 2007;34:4626–39.PubMedCrossRef
67.
Zurück zum Zitat Lamare F, Ledesma Carbayo MJ, Cresson T, Kontaxakis G, Santos A, Cheze Le Rest C, et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 2007;52:5187–204.PubMedCrossRef Lamare F, Ledesma Carbayo MJ, Cresson T, Kontaxakis G, Santos A, Cheze Le Rest C, et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 2007;52:5187–204.PubMedCrossRef
68.
Zurück zum Zitat Rahmim A, Dinelle K, Cheng J-C, Shilov MA, Segars WP, Lidstone SC, et al. Accurate event-driven motion compensation in high-resolution PET incorporating scattered and random events. IEEE Trans Med Imaging 2008;27:1018–33.PubMedCrossRef Rahmim A, Dinelle K, Cheng J-C, Shilov MA, Segars WP, Lidstone SC, et al. Accurate event-driven motion compensation in high-resolution PET incorporating scattered and random events. IEEE Trans Med Imaging 2008;27:1018–33.PubMedCrossRef
69.
Zurück zum Zitat Büther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009;50:674–81.PubMedCrossRef Büther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009;50:674–81.PubMedCrossRef
70.
Zurück zum Zitat Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 2009;36:3654–70.PubMedCrossRef Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys 2009;36:3654–70.PubMedCrossRef
71.
Zurück zum Zitat Perez CA. Principles and practice of radiation oncology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2004. Perez CA. Principles and practice of radiation oncology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2004.
72.
Zurück zum Zitat Otsu N. A thresholding selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9:62–6.CrossRef Otsu N. A thresholding selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9:62–6.CrossRef
73.
Zurück zum Zitat Reddi SS, Rudin SF, Keshavan HR. An optimal multiple threshold scheme for image segmentation. IEEE Trans Syst Man Cybern 1984;14:661–5. Reddi SS, Rudin SF, Keshavan HR. An optimal multiple threshold scheme for image segmentation. IEEE Trans Syst Man Cybern 1984;14:661–5.
74.
Zurück zum Zitat Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognit 1986;19:41–7.CrossRef Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognit 1986;19:41–7.CrossRef
75.
Zurück zum Zitat Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognit 1993;26:1277–94.CrossRef Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognit 1993;26:1277–94.CrossRef
77.
Zurück zum Zitat Keyes JW Jr. SUV: standard uptake value or silly useless value? J Nucl Med 1995;36:1836–9.PubMed Keyes JW Jr. SUV: standard uptake value or silly useless value? J Nucl Med 1995;36:1836–9.PubMed
78.
Zurück zum Zitat Basu S, Zaidi H, Houseni M, Udupa J, Acton P, Torigian D, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 2007;37:223–39.PubMedCrossRef Basu S, Zaidi H, Houseni M, Udupa J, Acton P, Torigian D, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 2007;37:223–39.PubMedCrossRef
79.
Zurück zum Zitat Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50:11S–20.PubMedCrossRef Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50:11S–20.PubMedCrossRef
80.
Zurück zum Zitat Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80:2505–9.PubMedCrossRef Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80:2505–9.PubMedCrossRef
81.
Zurück zum Zitat Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys 2002;53:353–9.PubMed Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys 2002;53:353–9.PubMed
82.
Zurück zum Zitat Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47:1808–12.PubMed Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47:1808–12.PubMed
83.
Zurück zum Zitat Ford EC, Kinahan PE, Hanlon L, Alessio A, Rajendran J, Schwartz DL, et al. Tumor delineation using PET in head and neck cancers: threshold contouring and lesion volumes. Med Phys 2006;33:4280–8.PubMedCrossRef Ford EC, Kinahan PE, Hanlon L, Alessio A, Rajendran J, Schwartz DL, et al. Tumor delineation using PET in head and neck cancers: threshold contouring and lesion volumes. Med Phys 2006;33:4280–8.PubMedCrossRef
84.
Zurück zum Zitat Zaidi H. Organ volume estimation using SPECT. IEEE Trans Nucl Sci 1996;43:2174–82.CrossRef Zaidi H. Organ volume estimation using SPECT. IEEE Trans Nucl Sci 1996;43:2174–82.CrossRef
85.
Zurück zum Zitat Yaremko B, Riauka T, Robinson D, Murray B, Alexander A, McEwan A, et al. Thresholding in PET images of static and moving targets. Phys Med Biol 2005;50:5969–82.PubMedCrossRef Yaremko B, Riauka T, Robinson D, Murray B, Alexander A, McEwan A, et al. Thresholding in PET images of static and moving targets. Phys Med Biol 2005;50:5969–82.PubMedCrossRef
86.
Zurück zum Zitat Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;61:1385–92.PubMed Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;61:1385–92.PubMed
87.
Zurück zum Zitat Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:1282–9.PubMed Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:1282–9.PubMed
88.
Zurück zum Zitat Vees H, Senthamizhchelvan S, Miralbell R, Weber D, Ratib O, Zaidi H. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging 2009;36:182–93.PubMedCrossRef Vees H, Senthamizhchelvan S, Miralbell R, Weber D, Ratib O, Zaidi H. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging 2009;36:182–93.PubMedCrossRef
89.
Zurück zum Zitat Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009;28:881–93.PubMedCrossRef Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009;28:881–93.PubMedCrossRef
90.
Zurück zum Zitat Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMed Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.PubMed
91.
Zurück zum Zitat Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef
92.
Zurück zum Zitat Brambilla M, Matheoud R, Secco C, Loi G, Krengli M, Inglese E. Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size. Med Phys 2008;35:1207–13.PubMedCrossRef Brambilla M, Matheoud R, Secco C, Loi G, Krengli M, Inglese E. Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size. Med Phys 2008;35:1207–13.PubMedCrossRef
93.
Zurück zum Zitat Drever L, Robinson DM, McEwan A, Roa W. A local contrast based approach to threshold segmentation for PET target volume delineation. Med Phys 2006;33:1583–94.PubMedCrossRef Drever L, Robinson DM, McEwan A, Roa W. A local contrast based approach to threshold segmentation for PET target volume delineation. Med Phys 2006;33:1583–94.PubMedCrossRef
94.
Zurück zum Zitat Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed
95.
Zurück zum Zitat Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C-M, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008;35:1989–99.PubMedCrossRef Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C-M, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008;35:1989–99.PubMedCrossRef
96.
Zurück zum Zitat Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108–14.PubMed Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108–14.PubMed
97.
Zurück zum Zitat Nehmeh SA, El-Zeftawy H, Greco C, Schwartz J, Erdi YE, Kirov A, et al. An iterative technique to segment PET lesions using a Monte Carlo based mathematical model. Med Phys 2009;36:4803–9.PubMedCrossRef Nehmeh SA, El-Zeftawy H, Greco C, Schwartz J, Erdi YE, Kirov A, et al. An iterative technique to segment PET lesions using a Monte Carlo based mathematical model. Med Phys 2009;36:4803–9.PubMedCrossRef
98.
Zurück zum Zitat Greco C, Nehmeh SA, Schöder H, Gönen M, Raphael B, Stambuk HE, et al. Evaluation of different methods of 18F-FDG-PET target volume delineation in the radiotherapy of head and neck cancer. Am J Clin Oncol 2008;31:439–45.PubMedCrossRef Greco C, Nehmeh SA, Schöder H, Gönen M, Raphael B, Stambuk HE, et al. Evaluation of different methods of 18F-FDG-PET target volume delineation in the radiotherapy of head and neck cancer. Am J Clin Oncol 2008;31:439–45.PubMedCrossRef
99.
100.
Zurück zum Zitat Huertas A, Medioni G. Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks. IEEE Trans Pattern Anal Mach Intell 1986;8:651–64.CrossRef Huertas A, Medioni G. Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks. IEEE Trans Pattern Anal Mach Intell 1986;8:651–64.CrossRef
101.
Zurück zum Zitat Canny JF. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986;8:679–98.CrossRef Canny JF. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986;8:679–98.CrossRef
102.
Zurück zum Zitat Drever LA, Roa W, McEwan A, Robinson D. Comparison of three image segmentation techniques for target volume delineation in positron emission tomography. J Appl Clin Med Phys 2007;8:93–109.PubMedCrossRef Drever LA, Roa W, McEwan A, Robinson D. Comparison of three image segmentation techniques for target volume delineation in positron emission tomography. J Appl Clin Med Phys 2007;8:93–109.PubMedCrossRef
103.
Zurück zum Zitat Geets X, Lee J, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007;34:1427–38.PubMedCrossRef Geets X, Lee J, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007;34:1427–38.PubMedCrossRef
104.
Zurück zum Zitat El Naqa I, Bradley J, Deasy J, Biehl K, Laforest R, Low D. Improved analysis of PET images for radiation therapy. 14th International Conference on the Use of Computers in Radiation Therapy. Seoul, Korea; 2004. pp 361–63. El Naqa I, Bradley J, Deasy J, Biehl K, Laforest R, Low D. Improved analysis of PET images for radiation therapy. 14th International Conference on the Use of Computers in Radiation Therapy. Seoul, Korea; 2004. pp 361–63.
105.
Zurück zum Zitat Hsu C-Y, Liu C-Y, Chen C-M. Automatic segmentation of liver PET images. Comput Med Imaging Graph 2008;32:601–10.PubMedCrossRef Hsu C-Y, Liu C-Y, Chen C-M. Automatic segmentation of liver PET images. Comput Med Imaging Graph 2008;32:601–10.PubMedCrossRef
106.
Zurück zum Zitat Li H, Thorstad WL, Biehl KJ, Laforest R, Su Y, Shoghi KI, et al. A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med Phys 2008;35:3711–21. Erratum. pp 5958.PubMedCrossRef Li H, Thorstad WL, Biehl KJ, Laforest R, Su Y, Shoghi KI, et al. A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med Phys 2008;35:3711–21. Erratum. pp 5958.PubMedCrossRef
107.
Zurück zum Zitat Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science. 2nd ed. Cambridge: Cambridge University Press; 1999. Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science. 2nd ed. Cambridge: Cambridge University Press; 1999.
108.
Zurück zum Zitat Xu C, Pham DL, Prince JL. Image segmentation using deformable models. In: Sonka M, Fitzpatrick JM, editors. Handbook of medical imaging: medical image processing and analysis. Bellingham: SPIE Press; 2002. pp. 129–74. Xu C, Pham DL, Prince JL. Image segmentation using deformable models. In: Sonka M, Fitzpatrick JM, editors. Handbook of medical imaging: medical image processing and analysis. Bellingham: SPIE Press; 2002. pp. 129–74.
109.
Zurück zum Zitat Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988;1:321–31.CrossRef Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988;1:321–31.CrossRef
110.
Zurück zum Zitat Kass M, Witkin A, Terzopoulos. Snakes: active contour models. First International Conference on Computer Vision. London; 1987. pp. 259–68. Kass M, Witkin A, Terzopoulos. Snakes: active contour models. First International Conference on Computer Vision. London; 1987. pp. 259–68.
111.
112.
Zurück zum Zitat Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 1998;7:359–69.PubMedCrossRef Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 1998;7:359–69.PubMedCrossRef
113.
Zurück zum Zitat Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988;79:12–49.CrossRef Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988;79:12–49.CrossRef
114.
Zurück zum Zitat Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley; 2001. Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley; 2001.
115.
Zurück zum Zitat Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 2000;22:4–37.CrossRef Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 2000;22:4–37.CrossRef
116.
Zurück zum Zitat Clarke LP, Velthuizen RP, Phuphanich S, Schellenberg JD, Arrington JA, Silbiger M. MRI: stability of three supervised segmentation techniques. Magn Reson Imaging 1993;11:95–106.PubMedCrossRef Clarke LP, Velthuizen RP, Phuphanich S, Schellenberg JD, Arrington JA, Silbiger M. MRI: stability of three supervised segmentation techniques. Magn Reson Imaging 1993;11:95–106.PubMedCrossRef
117.
Zurück zum Zitat Vaidyanathan M, Clarke LP, Velthuizen RP, Phuphanich S, Bensaid AM, Hall LO, et al. Comparison of supervised MRI segmentation methods for tumor volume determination during therapy. Magn Reson Imaging 1995;13:719–28.PubMedCrossRef Vaidyanathan M, Clarke LP, Velthuizen RP, Phuphanich S, Bensaid AM, Hall LO, et al. Comparison of supervised MRI segmentation methods for tumor volume determination during therapy. Magn Reson Imaging 1995;13:719–28.PubMedCrossRef
118.
Zurück zum Zitat Suri JS, Singh S, Reden L. Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part I): a state-of-the-art review. Pattern Anal Appl 2002;5:46–76.CrossRef Suri JS, Singh S, Reden L. Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part I): a state-of-the-art review. Pattern Anal Appl 2002;5:46–76.CrossRef
119.
Zurück zum Zitat El Naqa I, Yang Y. Techniques in the detection of microcalcification (MC) clusters in digital mammograms. In: Leondes T, editor. Medical imaging systems: technology and applications. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2005. pp. 15–36. El Naqa I, Yang Y. Techniques in the detection of microcalcification (MC) clusters in digital mammograms. In: Leondes T, editor. Medical imaging systems: technology and applications. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2005. pp. 15–36.
120.
Zurück zum Zitat Boudraa AE, Champier J, Cinotti L, Bordet JC, Lavenne F, Mallet JJ. Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography. Comput Med Imaging Graph 1996;20:31–41.PubMedCrossRef Boudraa AE, Champier J, Cinotti L, Bordet JC, Lavenne F, Mallet JJ. Delineation and quantitation of brain lesions by fuzzy clustering in positron emission tomography. Comput Med Imaging Graph 1996;20:31–41.PubMedCrossRef
121.
Zurück zum Zitat Zhu W, Jiang T. Automation segmentation of PET image for brain tumors. IEEE Nucl Sci Symp Conf Rec 2003;4:2627–29. Zhu W, Jiang T. Automation segmentation of PET image for brain tumors. IEEE Nucl Sci Symp Conf Rec 2003;4:2627–29.
122.
Zurück zum Zitat Kim J, Wen L, Eberl S, Fulton R, Feng DD. Use of anatomical priors in the segmentation of PET lung tumor images. IEEE Nucl Sci Symp Conf Rec 2007;4:4242–45. Kim J, Wen L, Eberl S, Fulton R, Feng DD. Use of anatomical priors in the segmentation of PET lung tumor images. IEEE Nucl Sci Symp Conf Rec 2007;4:4242–45.
123.
Zurück zum Zitat Belhassen S and Zaidi H. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 2010;37:1309–1324. Belhassen S and Zaidi H. A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 2010;37:1309–1324.
124.
Zurück zum Zitat Zaidi H, Diaz-Gomez M, Boudraa AO, Slosman DO. Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 2002;47:1143–60.PubMedCrossRef Zaidi H, Diaz-Gomez M, Boudraa AO, Slosman DO. Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. Phys Med Biol 2002;47:1143–60.PubMedCrossRef
125.
Zurück zum Zitat Acton PD, Pilowsky LS, Kung HF, Ell PJ. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering. Eur J Nucl Med 1999;26:581–90.PubMedCrossRef Acton PD, Pilowsky LS, Kung HF, Ell PJ. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering. Eur J Nucl Med 1999;26:581–90.PubMedCrossRef
126.
Zurück zum Zitat Bezdek JC, Hall LO, Clark MC, Goldgof DB, Clarke LP. Medical image analysis with fuzzy models. Stat Methods Med Res 1997;6:191–214.PubMedCrossRef Bezdek JC, Hall LO, Clark MC, Goldgof DB, Clarke LP. Medical image analysis with fuzzy models. Stat Methods Med Res 1997;6:191–214.PubMedCrossRef
127.
Zurück zum Zitat Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv 1999;31:264–323.CrossRef Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv 1999;31:264–323.CrossRef
128.
Zurück zum Zitat De Luca A, Termini S. A definition of non-probabilistic entropy in the setting of fuzzy sets theory. Inform Control 1972;20:301–12.CrossRef De Luca A, Termini S. A definition of non-probabilistic entropy in the setting of fuzzy sets theory. Inform Control 1972;20:301–12.CrossRef
129.
Zurück zum Zitat Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 1992;3:672–82.PubMedCrossRef Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 1992;3:672–82.PubMedCrossRef
130.
Zurück zum Zitat Pham DL, Prince JL. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 1999;20:57–68.CrossRef Pham DL, Prince JL. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 1999;20:57–68.CrossRef
131.
Zurück zum Zitat Janssen MH, Aerts HJ, Ollers MC, Bosmans G, Lee JA, Buijsen J, et al. Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients. Int J Radiat Oncol Biol Phys 2009;73:456–65.PubMed Janssen MH, Aerts HJ, Ollers MC, Bosmans G, Lee JA, Buijsen J, et al. Tumor delineation based on time-activity curve differences assessed with dynamic fluorodeoxyglucose positron emission tomography-computed tomography in rectal cancer patients. Int J Radiat Oncol Biol Phys 2009;73:456–65.PubMed
132.
Zurück zum Zitat Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12:629–39.CrossRef Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12:629–39.CrossRef
133.
Zurück zum Zitat Montgomery D, Amira A, Zaidi H. Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. Med Phys 2007;34:722–36.PubMedCrossRef Montgomery D, Amira A, Zaidi H. Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. Med Phys 2007;34:722–36.PubMedCrossRef
134.
Zurück zum Zitat Aristophanous M, Penney BC, Martel MK, Pelizzari CA. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys 2007;34:4223–35.PubMedCrossRef Aristophanous M, Penney BC, Martel MK, Pelizzari CA. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys 2007;34:4223–35.PubMedCrossRef
135.
Zurück zum Zitat Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 1999;18:897–908.PubMedCrossRef Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 1999;18:897–908.PubMedCrossRef
137.
Zurück zum Zitat Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, et al. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007;52:3467–91.PubMedCrossRef Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, et al. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007;52:3467–91.PubMedCrossRef
138.
Zurück zum Zitat Salzenstein F, Pieczynski W. Parameter estimation in hidden fuzzy Markovian fields and image segmentation. Graph Models Image Process 1997;59:205–20.CrossRef Salzenstein F, Pieczynski W. Parameter estimation in hidden fuzzy Markovian fields and image segmentation. Graph Models Image Process 1997;59:205–20.CrossRef
139.
Zurück zum Zitat Long DT, King MA, Sheehan J. Comparative evaluation of image segmentation methods for volume quantitation in SPECT. Med Phys 1992;19:483–9.PubMedCrossRef Long DT, King MA, Sheehan J. Comparative evaluation of image segmentation methods for volume quantitation in SPECT. Med Phys 1992;19:483–9.PubMedCrossRef
140.
141.
Zurück zum Zitat Guido A, Fuccio L, Rombi B, Castellucci P, Cecconi A, Bunkheila F, et al. Combined (18)F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;73:759–63.PubMed Guido A, Fuccio L, Rombi B, Castellucci P, Cecconi A, Bunkheila F, et al. Combined (18)F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;73:759–63.PubMed
142.
Zurück zum Zitat Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMed Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMed
143.
Zurück zum Zitat El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 2007;34:4738–49.PubMedCrossRef El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 2007;34:4738–49.PubMedCrossRef
144.
Zurück zum Zitat Jannin P, Krupinski E, Warfield S. Validation in medical image processing. IEEE Trans Med Imaging 2006;25:1405–9.PubMedCrossRef Jannin P, Krupinski E, Warfield S. Validation in medical image processing. IEEE Trans Med Imaging 2006;25:1405–9.PubMedCrossRef
145.
Zurück zum Zitat Slomka P, Baum R. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009;36:S44–55.PubMedCrossRef Slomka P, Baum R. Multimodality image registration with software: state-of-the-art. Eur J Nucl Med Mol Imaging 2009;36:S44–55.PubMedCrossRef
146.
Zurück zum Zitat Fiorino C, Reni M, Bolognesi A, Cattaneo GM, Calandrino R. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 1998;47:285–92.PubMedCrossRef Fiorino C, Reni M, Bolognesi A, Cattaneo GM, Calandrino R. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 1998;47:285–92.PubMedCrossRef
147.
Zurück zum Zitat Giraud P, Elles S, Helfre S, De Rycke Y, Servois V, Carette MF, et al. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 2002;62:27–36.PubMedCrossRef Giraud P, Elles S, Helfre S, De Rycke Y, Servois V, Carette MF, et al. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 2002;62:27–36.PubMedCrossRef
148.
Zurück zum Zitat Belhassen S, Llina Fuentes CS, Dekker A, De Ruysscher D, Ratib O, Zaidi H. Comparative methods for 18F-FDG PET-based delineation of target volumes in non-small-cell lung cancer [abstract]. J Nucl Med 2009;50:27P. Belhassen S, Llina Fuentes CS, Dekker A, De Ruysscher D, Ratib O, Zaidi H. Comparative methods for 18F-FDG PET-based delineation of target volumes in non-small-cell lung cancer [abstract]. J Nucl Med 2009;50:27P.
149.
Zurück zum Zitat Boucher L, Rodrigue S, Lecomte R, Bénard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 2004;45:214–9.PubMed Boucher L, Rodrigue S, Lecomte R, Bénard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 2004;45:214–9.PubMed
150.
Zurück zum Zitat El Naqa I, Low DA, Bradley JD, Vicic M, Deasy JO. Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. Med Phys 2006;33:3587–600.PubMedCrossRef El Naqa I, Low DA, Bradley JD, Vicic M, Deasy JO. Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. Med Phys 2006;33:3587–600.PubMedCrossRef
151.
Zurück zum Zitat Turkington TG, Degrado TR, Sampson WH. Small spheres for lesion detection phantoms. IEEE Nucl Sci Symp Conf Rec 2001;4:2234–37. Turkington TG, Degrado TR, Sampson WH. Small spheres for lesion detection phantoms. IEEE Nucl Sci Symp Conf Rec 2001;4:2234–37.
152.
Zurück zum Zitat Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI. Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008;18:37–42.PubMed Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI. Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008;18:37–42.PubMed
153.
Zurück zum Zitat Zaidi H, Xu XG. Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annu Rev Biomed Eng 2007;9:471–500.PubMedCrossRef Zaidi H, Xu XG. Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological sciences. Annu Rev Biomed Eng 2007;9:471–500.PubMedCrossRef
154.
Zurück zum Zitat Zaidi H, Tsui BMW. Review of computational anthropomorphic anatomical and physiological models. Proc IEEE 2009;97:1938–53.CrossRef Zaidi H, Tsui BMW. Review of computational anthropomorphic anatomical and physiological models. Proc IEEE 2009;97:1938–53.CrossRef
155.
Zurück zum Zitat Segars WP. Development and application of the new dynamic NURBS-based cardiac-torso (NCAT) phantom [PhD Thesis]: University of North Carolina, Chapel Hill, NC, USA; 2001. Segars WP. Development and application of the new dynamic NURBS-based cardiac-torso (NCAT) phantom [PhD Thesis]: University of North Carolina, Chapel Hill, NC, USA; 2001.
156.
Zurück zum Zitat Piegl L, Tiller W. The NURBS book. New York: Springer; 1997. Piegl L, Tiller W. The NURBS book. New York: Springer; 1997.
157.
Zurück zum Zitat Segars WP, Tsui BMW. MCAT to XCAT: the evolution of 4D computerized phantoms for imaging research. Proc IEEE 2009;97:1954–68.CrossRef Segars WP, Tsui BMW. MCAT to XCAT: the evolution of 4D computerized phantoms for imaging research. Proc IEEE 2009;97:1954–68.CrossRef
158.
Zurück zum Zitat Aristophanous M, Penney BC, Pelizzari CA. The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques. Med Phys 2008;35:3331–42.PubMedCrossRef Aristophanous M, Penney BC, Pelizzari CA. The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques. Med Phys 2008;35:3331–42.PubMedCrossRef
159.
Zurück zum Zitat Tomei S, Reilhac A, Visvikis D, Odet C, Giammarile F, Mognetti T, et al. Development of a database of realistic simulated whole body 18F-FDG images for lymphoma. Proc IEEE Nuclear Science Symposium and Medical Imaging Conference. Dresden, Germany: IEEE; 2008. pp. 4958–63. Tomei S, Reilhac A, Visvikis D, Odet C, Giammarile F, Mognetti T, et al. Development of a database of realistic simulated whole body 18F-FDG images for lymphoma. Proc IEEE Nuclear Science Symposium and Medical Imaging Conference. Dresden, Germany: IEEE; 2008. pp. 4958–63.
160.
Zurück zum Zitat Le Maitre A, Segars WP, Marache S, Reilhac A, Hatt M, Tomei S, et al. Incorporating patient specific variability in the simulation of realistic whole body 18F-FDG distributions for oncology applications. Proc IEEE 2009;97:2026–38.CrossRef Le Maitre A, Segars WP, Marache S, Reilhac A, Hatt M, Tomei S, et al. Incorporating patient specific variability in the simulation of realistic whole body 18F-FDG distributions for oncology applications. Proc IEEE 2009;97:2026–38.CrossRef
161.
Zurück zum Zitat Zaidi H, Herrmann Scheurer A, Morel C. An object-oriented Monte Carlo simulator for 3D positron tomographs. Comput Methods Programs Biomed 1999;58:133–45.PubMedCrossRef Zaidi H, Herrmann Scheurer A, Morel C. An object-oriented Monte Carlo simulator for 3D positron tomographs. Comput Methods Programs Biomed 1999;58:133–45.PubMedCrossRef
162.
Zurück zum Zitat Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 2004;49:4543–61.PubMedCrossRef Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 2004;49:4543–61.PubMedCrossRef
163.
Zurück zum Zitat Harrison RL, Vannoy SD, Haynor DR, Gillispie SB, Kaplan MS, Lewellen TK. Preliminary experience with the photon history generator module for a public-domain simulation system for emission tomography. Records of IEEE Nuclear Science Symposium and Medical Imaging Conference; 1993. pp. 1154–58. Harrison RL, Vannoy SD, Haynor DR, Gillispie SB, Kaplan MS, Lewellen TK. Preliminary experience with the photon history generator module for a public-domain simulation system for emission tomography. Records of IEEE Nuclear Science Symposium and Medical Imaging Conference; 1993. pp. 1154–58.
164.
Zurück zum Zitat Ay M, Zaidi H. Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam x-ray CT. Phys Med Biol 2005;50:4863–85.PubMedCrossRef Ay M, Zaidi H. Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam x-ray CT. Phys Med Biol 2005;50:4863–85.PubMedCrossRef
165.
Zurück zum Zitat Kyriakou Y, Riedel T, Kalender WA. Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys Med Biol 2006;51:4567–86.PubMedCrossRef Kyriakou Y, Riedel T, Kalender WA. Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys Med Biol 2006;51:4567–86.PubMedCrossRef
166.
Zurück zum Zitat Malusek A, Sandborg M, Carlsson GA. CTmod-A toolkit for Monte Carlo simulation of projections including scatter in computed tomography. Comput Methods Programs Biomed 2008;90:167–78.PubMedCrossRef Malusek A, Sandborg M, Carlsson GA. CTmod-A toolkit for Monte Carlo simulation of projections including scatter in computed tomography. Comput Methods Programs Biomed 2008;90:167–78.PubMedCrossRef
167.
Zurück zum Zitat Ay M, Zaidi H. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 2006;33:1301–13.PubMedCrossRef Ay M, Zaidi H. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 2006;33:1301–13.PubMedCrossRef
168.
Zurück zum Zitat Zhang YJ. A survey on evaluation methods for image segmentation. Pattern Recognit Lett 1996;29:1335–46. Zhang YJ. A survey on evaluation methods for image segmentation. Pattern Recognit Lett 1996;29:1335–46.
169.
Zurück zum Zitat Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 2004;11:178–89.PubMedCrossRef Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 2004;11:178–89.PubMedCrossRef
170.
Zurück zum Zitat Edwards PJ, Nijmeh AD, McGurk M, Odell E, Fenlon MR, Marsden PK, et al. Validation of PET imaging by alignment to histology slices. Int Conf Med Image Comput Comput Assist Interv 2005;8:968–75. Edwards PJ, Nijmeh AD, McGurk M, Odell E, Fenlon MR, Marsden PK, et al. Validation of PET imaging by alignment to histology slices. Int Conf Med Image Comput Comput Assist Interv 2005;8:968–75.
171.
Zurück zum Zitat Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRef Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRef
172.
Zurück zum Zitat Mamede M, Abreu ELP, Oliva MR, Nosé V, Mamon H, Gerbaudo VH. FDG-PET/CT tumor segmentation-derived indices of metabolic activity to assess response to neoadjuvant therapy and progression-free survival in esophageal cancer: correlation with histopathology results. Am J Clin Oncol 2007;30:377–88.PubMedCrossRef Mamede M, Abreu ELP, Oliva MR, Nosé V, Mamon H, Gerbaudo VH. FDG-PET/CT tumor segmentation-derived indices of metabolic activity to assess response to neoadjuvant therapy and progression-free survival in esophageal cancer: correlation with histopathology results. Am J Clin Oncol 2007;30:377–88.PubMedCrossRef
173.
Zurück zum Zitat Burri RJ, Rangaswamy B, Kostakoglu L, Hoch B, Genden EM, Som PM, et al. Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck. Int J Radiat Oncol Biol Phys 2008;71:682–8.PubMed Burri RJ, Rangaswamy B, Kostakoglu L, Hoch B, Genden EM, Som PM, et al. Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck. Int J Radiat Oncol Biol Phys 2008;71:682–8.PubMed
174.
Zurück zum Zitat Venel Y, Garhi H, de Muret A, Baulieu J-L, Barillot I, Prunier-Aesch C. Comparaison de six méthodes de segmentation du volume tumoral sur la 18F-FDG TEP-TDM avec le volume de référence anatomopathologique dans les cancers bronchopulmonaires non à petites cellules. Médecine Nucléaire 2008;32:339–53.CrossRef Venel Y, Garhi H, de Muret A, Baulieu J-L, Barillot I, Prunier-Aesch C. Comparaison de six méthodes de segmentation du volume tumoral sur la 18F-FDG TEP-TDM avec le volume de référence anatomopathologique dans les cancers bronchopulmonaires non à petites cellules. Médecine Nucléaire 2008;32:339–53.CrossRef
175.
Zurück zum Zitat Seitz O, Chambron-Pinho N, Middendorp M, Sader R, Mack M, Vogl TJ, et al. 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology 2009;51:677–86.PubMedCrossRef Seitz O, Chambron-Pinho N, Middendorp M, Sader R, Mack M, Vogl TJ, et al. 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology 2009;51:677–86.PubMedCrossRef
176.
Zurück zum Zitat Yu J, Li X, Xing L, Mu D, Fu Z, Sun X, et al. Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study. Int J Radiat Oncol Biol Phys 2009;75:1468–74.PubMed Yu J, Li X, Xing L, Mu D, Fu Z, Sun X, et al. Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study. Int J Radiat Oncol Biol Phys 2009;75:1468–74.PubMed
177.
Zurück zum Zitat Yu HM, Liu YF, Hou M, Liu J, Li XN, Yu JM. Evaluation of gross tumor size using CT, (18)F-FDG PET, integrated (18)F-FDG PET/CT and pathological analysis in non-small cell lung cancer. Eur J Radiol 2009;75:1468–74. Yu HM, Liu YF, Hou M, Liu J, Li XN, Yu JM. Evaluation of gross tumor size using CT, (18)F-FDG PET, integrated (18)F-FDG PET/CT and pathological analysis in non-small cell lung cancer. Eur J Radiol 2009;75:1468–74.
178.
Zurück zum Zitat Dahele M, Hwang D, Peressotti C, Sun L, Kusano M, Okhai S, et al. Developing a methodology for three-dimensional correlation of PET-CT images and whole-mount histopathology in non-small-cell lung cancer. Curr Oncol 2008;15:62–9.PubMedCrossRef Dahele M, Hwang D, Peressotti C, Sun L, Kusano M, Okhai S, et al. Developing a methodology for three-dimensional correlation of PET-CT images and whole-mount histopathology in non-small-cell lung cancer. Curr Oncol 2008;15:62–9.PubMedCrossRef
179.
Zurück zum Zitat Christian N, Lee JA, Bol A, De Bast M, Jordan B, Grégoire V. The limitation of PET imaging for biological adaptive-IMRT assessed in animal models. Radiother Oncol 2009;91:101–16.PubMedCrossRef Christian N, Lee JA, Bol A, De Bast M, Jordan B, Grégoire V. The limitation of PET imaging for biological adaptive-IMRT assessed in animal models. Radiother Oncol 2009;91:101–16.PubMedCrossRef
180.
Zurück zum Zitat Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRef Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRef
181.
Zurück zum Zitat Topkan E, Yavuz AA, Aydin M, Onal C, Yapar F, Yavuz MN. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res 2008;27:41.PubMedCrossRef Topkan E, Yavuz AA, Aydin M, Onal C, Yapar F, Yavuz MN. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res 2008;27:41.PubMedCrossRef
182.
Zurück zum Zitat Ford EC, Lavely WC, Frassica DA, Myers LT, Asrari F, Wahl RL, et al. Comparison of FDG-PET/CT and CT for delineation of lumpectomy cavity for partial breast irradiation. Int J Radiat Oncol Biol Phys 2008;71:595–602.PubMed Ford EC, Lavely WC, Frassica DA, Myers LT, Asrari F, Wahl RL, et al. Comparison of FDG-PET/CT and CT for delineation of lumpectomy cavity for partial breast irradiation. Int J Radiat Oncol Biol Phys 2008;71:595–602.PubMed
183.
Zurück zum Zitat Visser EP, Philippens MEP, Kienhorst L, Kaanders JHAM, Corstens FHM, de Geus-Oei L-F, et al. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. J Nucl Med 2008;49:892–8.PubMedCrossRef Visser EP, Philippens MEP, Kienhorst L, Kaanders JHAM, Corstens FHM, de Geus-Oei L-F, et al. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. J Nucl Med 2008;49:892–8.PubMedCrossRef
184.
Zurück zum Zitat Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Kirsch CM, Hellwig D. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning—an intraindividual comparison. Int J Radiat Oncol Biol Phys 2009;73:103–11.PubMed Grgic A, Nestle U, Schaefer-Schuler A, Kremp S, Kirsch CM, Hellwig D. FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning—an intraindividual comparison. Int J Radiat Oncol Biol Phys 2009;73:103–11.PubMed
185.
Zurück zum Zitat Zou KH, Wells WM, Kikinis R, Warfield SK. Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat Med 2004;23:1259–82.PubMedCrossRef Zou KH, Wells WM, Kikinis R, Warfield SK. Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat Med 2004;23:1259–82.PubMedCrossRef
186.
Zurück zum Zitat Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 2010: in press. Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 2010: in press.
187.
Zurück zum Zitat Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.PubMed Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.PubMed
188.
Zurück zum Zitat Swensson RG. Unified measurement of observer performance in detecting and localizing target objects on images. Med Phys 1996;23:1709–25.PubMedCrossRef Swensson RG. Unified measurement of observer performance in detecting and localizing target objects on images. Med Phys 1996;23:1709–25.PubMedCrossRef
189.
Zurück zum Zitat Zou KH, Warfield SK, Fielding JR, Tempany CM, William MW, Kaus MR, et al. Statistical validation based on parametric receiver operating characteristic analysis of continuous classification data. Acad Radiol 2003;10:1359–68.PubMedCrossRef Zou KH, Warfield SK, Fielding JR, Tempany CM, William MW, Kaus MR, et al. Statistical validation based on parametric receiver operating characteristic analysis of continuous classification data. Acad Radiol 2003;10:1359–68.PubMedCrossRef
190.
Zurück zum Zitat Henkelman RM, Kay I, Bronskill MJ. Receiver operator characteristic (ROC) analysis without truth. Med Decis Making 1990;10:24–9.PubMedCrossRef Henkelman RM, Kay I, Bronskill MJ. Receiver operator characteristic (ROC) analysis without truth. Med Decis Making 1990;10:24–9.PubMedCrossRef
191.
Zurück zum Zitat Beiden SV, Campbell G, Meier KL, Wagner RF. On the problem of ROC analysis without truth: the EM algorithm and the information matrix. Proc SPIE 2000;3981:126–34.CrossRef Beiden SV, Campbell G, Meier KL, Wagner RF. On the problem of ROC analysis without truth: the EM algorithm and the information matrix. Proc SPIE 2000;3981:126–34.CrossRef
192.
Zurück zum Zitat Hoppin JW, Kupinski MA, Kastis GA, Clarkson E, Barrett HH. Objective comparison of quantitative imaging modalities without the use of a gold standard. IEEE Trans Med Imaging 2002;21:441–9.PubMedCrossRef Hoppin JW, Kupinski MA, Kastis GA, Clarkson E, Barrett HH. Objective comparison of quantitative imaging modalities without the use of a gold standard. IEEE Trans Med Imaging 2002;21:441–9.PubMedCrossRef
193.
Zurück zum Zitat Kupinski MA, Hoppin JW, Clarkson E, Barrett HH, Kastis GA. Estimation in medical imaging without a gold standard. Acad Radiol 2002;9:290–7.PubMedCrossRef Kupinski MA, Hoppin JW, Clarkson E, Barrett HH, Kastis GA. Estimation in medical imaging without a gold standard. Acad Radiol 2002;9:290–7.PubMedCrossRef
194.
Zurück zum Zitat Hoppin JW, Kupinski MA, Wilson DW, Peterson T, Gershman B, Kastis G, et al. Evaluating estimation techniques in medical imaging without a gold standard: experimental validation. Proc SPIE 2003;5034:230–7.CrossRef Hoppin JW, Kupinski MA, Wilson DW, Peterson T, Gershman B, Kastis G, et al. Evaluating estimation techniques in medical imaging without a gold standard: experimental validation. Proc SPIE 2003;5034:230–7.CrossRef
195.
Zurück zum Zitat Zaidi H, Ruest T, Schoenahl F, Montandon M-L. Comparative evaluation of statistical brain MR image segmentation algorithms and their impact on partial volume effect correction in PET. Neuroimage 2006;32:1591–607.PubMedCrossRef Zaidi H, Ruest T, Schoenahl F, Montandon M-L. Comparative evaluation of statistical brain MR image segmentation algorithms and their impact on partial volume effect correction in PET. Neuroimage 2006;32:1591–607.PubMedCrossRef
196.
Zurück zum Zitat Maes F, Vandermeulen D, Suetens P. Medical image registration using mutual information. Proc IEEE 2003;91:1699–722.CrossRef Maes F, Vandermeulen D, Suetens P. Medical image registration using mutual information. Proc IEEE 2003;91:1699–722.CrossRef
197.
Zurück zum Zitat Viola P. Alignment by maximization of mutual information. [PhD Thesis]. Massachusetts Institute of Technology; Cambridge, 1995. Viola P. Alignment by maximization of mutual information. [PhD Thesis]. Massachusetts Institute of Technology; Cambridge, 1995.
198.
Zurück zum Zitat Holden M, Hill DL, Denton ER, Jarosz JM, Cox TC, Rohlfing T, et al. Voxel similarity measures for 3-D serial MR brain image registration. IEEE Trans Med Imaging 2000;19:94–102.PubMedCrossRef Holden M, Hill DL, Denton ER, Jarosz JM, Cox TC, Rohlfing T, et al. Voxel similarity measures for 3-D serial MR brain image registration. IEEE Trans Med Imaging 2000;19:94–102.PubMedCrossRef
199.
Zurück zum Zitat Aerts HJ, Bosmans G, van Baardwijk AA, Dekker AL, Oellers MC, Lambin P, et al. Stability of (18)F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys 2008;71:1402–7.PubMed Aerts HJ, Bosmans G, van Baardwijk AA, Dekker AL, Oellers MC, Lambin P, et al. Stability of (18)F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys 2008;71:1402–7.PubMed
200.
Zurück zum Zitat Kumar R, Dhanpathi H, Basu S, Rubello D, Fanti S, Alavi A. Oncologic PET tracers beyond [(18)F]FDG and the novel quantitative approaches in PET imaging. Q J Nucl Med Mol Imaging 2008;52:50–65.PubMed Kumar R, Dhanpathi H, Basu S, Rubello D, Fanti S, Alavi A. Oncologic PET tracers beyond [(18)F]FDG and the novel quantitative approaches in PET imaging. Q J Nucl Med Mol Imaging 2008;52:50–65.PubMed
201.
Zurück zum Zitat Lewis JS, Welch MJ, Tang L. Workshop on the production, application and clinical translation of “non-standard” PET nuclides: a meeting report. Q J Nucl Med Mol Imaging 2008;52:101–6.PubMed Lewis JS, Welch MJ, Tang L. Workshop on the production, application and clinical translation of “non-standard” PET nuclides: a meeting report. Q J Nucl Med Mol Imaging 2008;52:101–6.PubMed
202.
Zurück zum Zitat Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med 2008;49 Suppl 2:64S–80.PubMedCrossRef Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med 2008;49 Suppl 2:64S–80.PubMedCrossRef
203.
Zurück zum Zitat Dunphy MPS, Lewis JS. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 2009;50:106S–21.PubMedCrossRef Dunphy MPS, Lewis JS. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J Nucl Med 2009;50:106S–21.PubMedCrossRef
204.
Zurück zum Zitat Koch CJ, Evans SM. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 2003;510:285–92.PubMed Koch CJ, Evans SM. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 2003;510:285–92.PubMed
205.
Zurück zum Zitat Grosu AL, Souvatzoglou M, Röper B, Dobritz M, Wiedenmann N, Jacob V, et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:541–51.PubMed Grosu AL, Souvatzoglou M, Röper B, Dobritz M, Wiedenmann N, Jacob V, et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:541–51.PubMed
206.
Zurück zum Zitat Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 2008;49:573–86.PubMedCrossRef Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 2008;49:573–86.PubMedCrossRef
207.
Zurück zum Zitat Tang BN, Van Simaeys G, Devriendt D, Sadeghi N, Dewitte O, Massager N, et al. Three-dimensional Gaussian model to define brain metastasis limits on (11)C-methionine PET. Radiother Oncol 2008;89:270–7.PubMedCrossRef Tang BN, Van Simaeys G, Devriendt D, Sadeghi N, Dewitte O, Massager N, et al. Three-dimensional Gaussian model to define brain metastasis limits on (11)C-methionine PET. Radiother Oncol 2008;89:270–7.PubMedCrossRef
208.
Zurück zum Zitat Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007;6:23–30.PubMed Ciernik IF, Brown DW, Schmid D, Hany T, Egli P, Davis JB. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate. Technol Cancer Res Treat 2007;6:23–30.PubMed
209.
Zurück zum Zitat Wang H, Vees H, Miralbell R, Wissmeyer M, Steiner C, Ratib O, et al. (18)F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer. Radiother Oncol 2009;93:220–5.PubMedCrossRef Wang H, Vees H, Miralbell R, Wissmeyer M, Steiner C, Ratib O, et al. (18)F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer. Radiother Oncol 2009;93:220–5.PubMedCrossRef
210.
Zurück zum Zitat Weber D, Wang H, Cozzi L, Dipasquale G, Khan H, Ratib O, et al. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol 2009;4:34.PubMedCrossRef Weber D, Wang H, Cozzi L, Dipasquale G, Khan H, Ratib O, et al. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study. Radiat Oncol 2009;4:34.PubMedCrossRef
211.
Zurück zum Zitat Patel DA, Chang ST, Goodman KA, Quon A, Thorndyke B, Gambhir SS, et al. Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Technol Cancer Res Treat 2007;6:31–6.PubMed Patel DA, Chang ST, Goodman KA, Quon A, Thorndyke B, Gambhir SS, et al. Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Technol Cancer Res Treat 2007;6:31–6.PubMed
212.
Zurück zum Zitat Weber DC, Zilli T, Buchegger F, Casanova N, Haller G, Rouzaud M, et al. [(18)F]Fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 2008;3:44.PubMedCrossRef Weber DC, Zilli T, Buchegger F, Casanova N, Haller G, Rouzaud M, et al. [(18)F]Fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 2008;3:44.PubMedCrossRef
213.
Zurück zum Zitat Zaidi H, Mawlawi O. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 2007;34:1525–8.PubMedCrossRef Zaidi H, Mawlawi O. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 2007;34:1525–8.PubMedCrossRef
214.
Zurück zum Zitat Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 2008;38:199–208.PubMedCrossRef Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 2008;38:199–208.PubMedCrossRef
215.
Zurück zum Zitat Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008;26:2155–61.PubMedCrossRef Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 2008;26:2155–61.PubMedCrossRef
216.
Zurück zum Zitat Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 2006;65:726–32.PubMed Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 2006;65:726–32.PubMed
217.
Zurück zum Zitat Davis JB, Reiner B, Huser M, Burger C, Szekely G, Ciernik IF. Assessment of (18)F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 2006;80:43–50.PubMedCrossRef Davis JB, Reiner B, Huser M, Burger C, Szekely G, Ciernik IF. Assessment of (18)F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 2006;80:43–50.PubMedCrossRef
218.
Zurück zum Zitat Drever L, Roa W, McEwan A, Robinson D. Iterative threshold segmentation for PET target volume delineation. Med Phys 2007;34:1253–65.PubMedCrossRef Drever L, Roa W, McEwan A, Robinson D. Iterative threshold segmentation for PET target volume delineation. Med Phys 2007;34:1253–65.PubMedCrossRef
219.
Zurück zum Zitat Vauclin S, Doyeux K, Hapdey S, Edet-Sanson A, Vera P, Gardin I. Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys Med Biol 2009;54:6901–16.PubMedCrossRef Vauclin S, Doyeux K, Hapdey S, Edet-Sanson A, Vera P, Gardin I. Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys Med Biol 2009;54:6901–16.PubMedCrossRef
220.
Zurück zum Zitat Day E, Betler J, Parda D, Reitz B, Kirichenko A, Mohammadi S, et al. A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med Phys 2009;36:4349–58.PubMedCrossRef Day E, Betler J, Parda D, Reitz B, Kirichenko A, Mohammadi S, et al. A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med Phys 2009;36:4349–58.PubMedCrossRef
221.
Zurück zum Zitat van Dalen JA, Hoffmann AL, Dicken V, Vogel WV, Wiering B, Ruers TJ, et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun 2007;28:485–93.PubMedCrossRef van Dalen JA, Hoffmann AL, Dicken V, Vogel WV, Wiering B, Ruers TJ, et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun 2007;28:485–93.PubMedCrossRef
222.
Zurück zum Zitat Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu Y-C, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51–60.PubMedCrossRef Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu Y-C, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002;62:51–60.PubMedCrossRef
223.
Zurück zum Zitat Vrieze O, Haustermans K, De Wever W, Lerut T, Van Cutsem E, Ectors N, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73:269–75.PubMedCrossRef Vrieze O, Haustermans K, De Wever W, Lerut T, Van Cutsem E, Ectors N, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 2004;73:269–75.PubMedCrossRef
224.
Zurück zum Zitat van Loon J, Offermann C, Bosmans G, Wanders R, Dekker A, Borger J, et al. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother Oncol 2008;87:49–54.PubMedCrossRef van Loon J, Offermann C, Bosmans G, Wanders R, Dekker A, Borger J, et al. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother Oncol 2008;87:49–54.PubMedCrossRef
225.
Zurück zum Zitat Breen SL, Publicover J, De Silva S, Pond G, Brock K, O’Sullivan B, et al. Intraobserver and interobserver variability in GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys 2007;68:763–70.PubMed Breen SL, Publicover J, De Silva S, Pond G, Brock K, O’Sullivan B, et al. Intraobserver and interobserver variability in GTV delineation on FDG-PET-CT images of head and neck cancers. Int J Radiat Oncol Biol Phys 2007;68:763–70.PubMed
226.
Zurück zum Zitat Schinagl DA, Hoffmann AL, Vogel WV, van Dalen JA, Verstappen SM, Oyen WJ, et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol 2009;91:95–100.PubMedCrossRef Schinagl DA, Hoffmann AL, Vogel WV, van Dalen JA, Verstappen SM, Oyen WJ, et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol 2009;91:95–100.PubMedCrossRef
227.
Zurück zum Zitat Murakami R, Uozumi H, Hirai T, Nishimura R, Katsuragawa S, Shiraishi S, et al. Impact of FDG-PET/CT fused imaging on tumor volume assessment of head-and-neck squamous cell carcinoma: intermethod and interobserver variations. Acta Radiol 2008;49:693–9.PubMedCrossRef Murakami R, Uozumi H, Hirai T, Nishimura R, Katsuragawa S, Shiraishi S, et al. Impact of FDG-PET/CT fused imaging on tumor volume assessment of head-and-neck squamous cell carcinoma: intermethod and interobserver variations. Acta Radiol 2008;49:693–9.PubMedCrossRef
228.
Zurück zum Zitat El-Bassiouni M, Ciernik IF, Davis JB, El-Attar I, Reiner B, Burger C, et al. [18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:286–93.PubMed El-Bassiouni M, Ciernik IF, Davis JB, El-Attar I, Reiner B, Burger C, et al. [18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer. Int J Radiat Oncol Biol Phys 2007;69:286–93.PubMed
229.
Zurück zum Zitat Deantonio L, Beldi D, Gambaro G, Loi G, Brambilla M, Inglese E, et al. FDG-PET/CT imaging for staging and radiotherapy treatment planning of head and neck carcinoma. Radiat Oncol 2008;3:29.PubMedCrossRef Deantonio L, Beldi D, Gambaro G, Loi G, Brambilla M, Inglese E, et al. FDG-PET/CT imaging for staging and radiotherapy treatment planning of head and neck carcinoma. Radiat Oncol 2008;3:29.PubMedCrossRef
Metadaten
Titel
PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques
verfasst von
Habib Zaidi
Issam El Naqa
Publikationsdatum
01.11.2010
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 11/2010
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1423-3

Weitere Artikel der Ausgabe 11/2010

European Journal of Nuclear Medicine and Molecular Imaging 11/2010 Zur Ausgabe