Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 1/2016

01.01.2016 | Original Article

Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [11C]ABP688 PET

verfasst von: Jonathan M. DuBois, Olivier G. Rousset, Jared Rowley, Manuel Porras-Betancourt, Andrew J. Reader, Aurelie Labbe, Gassan Massarweh, Jean-Paul Soucy, Pedro Rosa-Neto, Eliane Kobayashi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Metabotropic glutamate receptor type 5 (mGluR5) is a G protein-coupled receptor that has been implicated in several psychiatric and neurological diseases. The radiopharmaceutical [11C]ABP688 allows for in vivo quantification of mGluR5 availability using positron emission tomography (PET). In this study, we aimed to detail the regional distribution of [11C]ABP688 binding potential (BPND) and the existence of age/sex effects in healthy individuals.

Methods

Thirty-one healthy individuals aged 20 to 77 years (men, n = 18, 45.3 ± 18.2 years; females, n = 13, 41.5 ± 19.6 years) underwent imaging with [11C]ABP688 using the high-resolution research tomograph (HRRT). We developed an advanced partial volume correction (PVC) method using surface-based analysis in order to accurately estimate the regional variation of radioactivity. BPND was calculated using the simplified reference tissue model, with the cerebellum as the reference region. Surface-based and volume-based analyses were performed for 39 cortical and subcortical regions of interest per hemisphere.

Results

We found the highest [11C]ABP688 BPND in the lateral prefrontal and anterior cingulate cortices. The lowest [11C]ABP688 BPND was observed in the pre- and post-central gyri as well as the occipital lobes and the thalami. No sex effect was observed. Associations between age and [11C]ABP688 BPND without PVC were observed in the right amygdala and left putamen, but were not significant after multiple comparisons correction.

Conclusions

The present results highlight complexities underlying brain adaptations during the aging process, and support the notion that certain aspects of neurotransmission remain stable during the adult life span.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev. 1999;29(1):83–120.CrossRefPubMed Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev. 1999;29(1):83–120.CrossRefPubMed
2.
Zurück zum Zitat Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem. 2000;75(3):889–907.CrossRefPubMed Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem. 2000;75(3):889–907.CrossRefPubMed
3.
Zurück zum Zitat Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J. 2001;359(Pt 3):465–84.PubMedCentralCrossRefPubMed Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J. 2001;359(Pt 3):465–84.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Benarroch EE. Metabotropic glutamate receptors: synaptic modulators and therapeutic targets for neurologic disease. Neurology. 2008;70(12):964–8.CrossRefPubMed Benarroch EE. Metabotropic glutamate receptors: synaptic modulators and therapeutic targets for neurologic disease. Neurology. 2008;70(12):964–8.CrossRefPubMed
6.
Zurück zum Zitat Ametamey SM. Radiosynthesis and Preclinical Evaluation of 11C-ABP688 as a Probe for Imaging the Metabotropic Glutamate Receptor Subtype 5. J Nucl Med. 2006;47(4):698–705.PubMed Ametamey SM. Radiosynthesis and Preclinical Evaluation of 11C-ABP688 as a Probe for Imaging the Metabotropic Glutamate Receptor Subtype 5. J Nucl Med. 2006;47(4):698–705.PubMed
7.
Zurück zum Zitat Ametamey SM, Treyer V, Streffer J, Wyss MT, Schmidt M, Blagoev M, et al. Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J Nucl Med. 2007;48(2):247–52.PubMed Ametamey SM, Treyer V, Streffer J, Wyss MT, Schmidt M, Blagoev M, et al. Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688. J Nucl Med. 2007;48(2):247–52.PubMed
8.
Zurück zum Zitat Treyer V, Streffer J, Wyss MT, Bettio A, Ametamey SM, Fischer U, et al. Evaluation of the metabotropic glutamate receptor subtype 5 using PET and 11C-ABP688: assessment of methods. J Nucl Med. 2007;48(7):1207–15.CrossRefPubMed Treyer V, Streffer J, Wyss MT, Bettio A, Ametamey SM, Fischer U, et al. Evaluation of the metabotropic glutamate receptor subtype 5 using PET and 11C-ABP688: assessment of methods. J Nucl Med. 2007;48(7):1207–15.CrossRefPubMed
9.
Zurück zum Zitat Hu Y, Xu Q, Li K, Zhu H, Qi R, Zhang Z, et al. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults. PLoS One. 2013;8(12), e83821.PubMedCentralCrossRefPubMed Hu Y, Xu Q, Li K, Zhu H, Qi R, Zhang Z, et al. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults. PLoS One. 2013;8(12), e83821.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Madsen K, Haahr MT, Marner L, Keller SH, Baare WF, Svarer C, et al. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study. J Cereb Blood Flow Metab. 2011;31(6):1475–81.PubMedCentralCrossRefPubMed Madsen K, Haahr MT, Marner L, Keller SH, Baare WF, Svarer C, et al. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study. J Cereb Blood Flow Metab. 2011;31(6):1475–81.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience. 2010;170(4):1045–55.PubMedCentralCrossRefPubMed Grove-Strawser D, Boulware MI, Mermelstein PG. Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience. 2010;170(4):1045–55.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, et al. Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am J Psychiatry. 2011;168(7):727–34.PubMedCentralCrossRefPubMed Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, et al. Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am J Psychiatry. 2011;168(7):727–34.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Hulka LM, Treyer V, Scheidegger M, Preller KH, Vonmoos M, Baumgartner MR, et al. Smoking but not cocaine use is associated with lower cerebral metabotropic glutamate receptor 5 density in humans. Mol Psychiatr. 2014;19(5):625–32.CrossRef Hulka LM, Treyer V, Scheidegger M, Preller KH, Vonmoos M, Baumgartner MR, et al. Smoking but not cocaine use is associated with lower cerebral metabotropic glutamate receptor 5 density in humans. Mol Psychiatr. 2014;19(5):625–32.CrossRef
14.
Zurück zum Zitat DeLorenzo C, Kumar JS, Mann JJ, Parsey RV. In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab. 2011;31(11):2169–80.PubMedCentralCrossRefPubMed DeLorenzo C, Kumar JS, Mann JJ, Parsey RV. In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [11C]ABP688. J Cereb Blood Flow Metab. 2011;31(11):2169–80.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Akkus F, Ametamey SM, Treyer V, Burger C, Johayem A, Umbricht D, et al. Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc Natl Acad Sci U S A. 2013;110(2):737–42.PubMedCentralCrossRefPubMed Akkus F, Ametamey SM, Treyer V, Burger C, Johayem A, Umbricht D, et al. Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc Natl Acad Sci U S A. 2013;110(2):737–42.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Matuskey D, Pittman B, Planeta-Wilson B, Walderhaug E, Henry S, Gallezot JD, et al. Age effects on serotonin receptor 1B as assessed by PET. J Nucl Med. 2012;53(9):1411–4.PubMedCentralCrossRefPubMed Matuskey D, Pittman B, Planeta-Wilson B, Walderhaug E, Henry S, Gallezot JD, et al. Age effects on serotonin receptor 1B as assessed by PET. J Nucl Med. 2012;53(9):1411–4.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Moses-Kolko EL, Price JC, Shah N, Berga S, Sereika SM, Fisher PM, et al. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population. Neuropsychopharmacology. 2011;36(13):2729–40.PubMedCentralCrossRefPubMed Moses-Kolko EL, Price JC, Shah N, Berga S, Sereika SM, Fisher PM, et al. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population. Neuropsychopharmacology. 2011;36(13):2729–40.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Engman J, Ahs F, Furmark T, Linnman C, Pissiota A, Appel L, et al. Age, sex and NK1 receptors in the human brain -- a positron emission tomography study with [(1)(1)C]GR205171. Eur Neuropsychopharm. 2012;22(8):562–8.CrossRef Engman J, Ahs F, Furmark T, Linnman C, Pissiota A, Appel L, et al. Age, sex and NK1 receptors in the human brain -- a positron emission tomography study with [(1)(1)C]GR205171. Eur Neuropsychopharm. 2012;22(8):562–8.CrossRef
19.
Zurück zum Zitat Fowler J, Volkow N, Wang G-J, Logan J, Pappas N, Shea C, et al. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging. 1997;18(4):431–5.CrossRefPubMed Fowler J, Volkow N, Wang G-J, Logan J, Pappas N, Shea C, et al. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging. 1997;18(4):431–5.CrossRefPubMed
20.
Zurück zum Zitat Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57(21):R119–59.CrossRefPubMed Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57(21):R119–59.CrossRefPubMed
21.
Zurück zum Zitat Uchida H, Chow TW, Mamo DC, Kapur S, Mulsant BH, Houle S, et al. Effects of aging on 5-HT(2A) R binding: a HRRT PET study with and without partial volume corrections. Int J Geriatr Psychiatry. 2011;26(12):1300–8.CrossRefPubMed Uchida H, Chow TW, Mamo DC, Kapur S, Mulsant BH, Houle S, et al. Effects of aging on 5-HT(2A) R binding: a HRRT PET study with and without partial volume corrections. Int J Geriatr Psychiatry. 2011;26(12):1300–8.CrossRefPubMed
22.
Zurück zum Zitat Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. NeuroImage. 2014;92:225–36.PubMedCentralCrossRefPubMed Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. NeuroImage. 2014;92:225–36.PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2011;38(6):1104–19.CrossRefPubMed Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2011;38(6):1104–19.CrossRefPubMed
24.
Zurück zum Zitat Elmenhorst D, Minuzzi L, Aliaga A, Rowley J, Massarweh G, Diksic M, et al. In vivo and in vitro validation of reference tissue models for the mGluR(5) ligand [(11)C]ABP688. J Cereb Blood Flow Metab. 2010;30(8):1538–49.PubMedCentralCrossRefPubMed Elmenhorst D, Minuzzi L, Aliaga A, Rowley J, Massarweh G, Diksic M, et al. In vivo and in vitro validation of reference tissue models for the mGluR(5) ligand [(11)C]ABP688. J Cereb Blood Flow Metab. 2010;30(8):1538–49.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Hong I, Chung S, Kim H, Kim Y, Son Y, Cho Z. Ultra fast symmetry and SIMD-based projection-backprojection (SSP) algorithm for 3-D PET image reconstruction. IEEE Trans Med Imaging. 2007;26(6):789–803.CrossRefPubMed Hong I, Chung S, Kim H, Kim Y, Son Y, Cho Z. Ultra fast symmetry and SIMD-based projection-backprojection (SSP) algorithm for 3-D PET image reconstruction. IEEE Trans Med Imaging. 2007;26(6):789–803.CrossRefPubMed
26.
Zurück zum Zitat Comtat C, Sureau F, Sibomana M, Hong I, Sjöholm N, Trebossen R. Image based resolution modeling for the HRRT OSEM reconstructions software. IEEE Nucl Sci Symp Conf Rec. 2008;4120–23. Comtat C, Sureau F, Sibomana M, Hong I, Sjöholm N, Trebossen R. Image based resolution modeling for the HRRT OSEM reconstructions software. IEEE Nucl Sci Symp Conf Rec. 2008;4120–23.
27.
Zurück zum Zitat Sureau FC, Reader AJ, Comtat C, Leroy C, Ribeiro MJ, Buvat I, et al. Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med. 2008;49(6):1000–8.CrossRefPubMed Sureau FC, Reader AJ, Comtat C, Leroy C, Ribeiro MJ, Buvat I, et al. Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med. 2008;49(6):1000–8.CrossRefPubMed
28.
Zurück zum Zitat Costes N, Dagher A, Larcher K, Evans AC, Collins DL, Reilhac A. Motion correction of multi-frame PET data in neuroreceptor mapping: simulation based validation. NeuroImage. 2009;47(4):1496–505.CrossRefPubMed Costes N, Dagher A, Larcher K, Evans AC, Collins DL, Reilhac A. Motion correction of multi-frame PET data in neuroreceptor mapping: simulation based validation. NeuroImage. 2009;47(4):1496–505.CrossRefPubMed
29.
Zurück zum Zitat Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. NeuroImage. 1997;6(4):279–87.CrossRefPubMed Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. NeuroImage. 1997;6(4):279–87.CrossRefPubMed
30.
Zurück zum Zitat Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.CrossRefPubMed Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.CrossRefPubMed
31.
Zurück zum Zitat Milella M, Reader A, Albrechtsons D, Minuzi L, Soucy J, Benkelfat C. Human PET validation study of reference tissue models for the mGluR5 ligand [11C] ABP688. Paper presented at Society for Neuroscience Annual Meeting. Washington, DC; 2011. 946.06/AAA31. Milella M, Reader A, Albrechtsons D, Minuzi L, Soucy J, Benkelfat C. Human PET validation study of reference tissue models for the mGluR5 ligand [11C] ABP688. Paper presented at Society for Neuroscience Annual Meeting. Washington, DC; 2011. 946.06/AAA31.
33.
Zurück zum Zitat Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage. 1999;9(2):179–94.CrossRefPubMed Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage. 1999;9(2):179–94.CrossRefPubMed
34.
Zurück zum Zitat Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.CrossRefPubMed Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.CrossRefPubMed
35.
Zurück zum Zitat Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage. 1999;9(2):195–207.CrossRefPubMed Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage. 1999;9(2):195–207.CrossRefPubMed
36.
Zurück zum Zitat Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. NeuroImage. 2004;22(3):1060–75.CrossRefPubMed Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. NeuroImage. 2004;22(3):1060–75.CrossRefPubMed
37.
Zurück zum Zitat Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging. 2001;20(1):70–80.CrossRefPubMed Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging. 2001;20(1):70–80.CrossRefPubMed
38.
Zurück zum Zitat Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26(4):518–29.CrossRefPubMed Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26(4):518–29.CrossRefPubMed
39.
Zurück zum Zitat Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97(20):11050–5.PubMedCentralCrossRefPubMed Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97(20):11050–5.PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31(3):968–80.CrossRefPubMed Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31(3):968–80.CrossRefPubMed
42.
Zurück zum Zitat Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39(5):904–11.PubMed Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39(5):904–11.PubMed
43.
Zurück zum Zitat Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12(4):571–83.CrossRefPubMed Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12(4):571–83.CrossRefPubMed
44.
Zurück zum Zitat Rousset O, Rahmim A, Alavi A, Zaidi H. Partial Volume Correction Strategies in PET. PET Clin. 2007;2(2):235–49.CrossRef Rousset O, Rahmim A, Alavi A, Zaidi H. Partial Volume Correction Strategies in PET. PET Clin. 2007;2(2):235–49.CrossRef
46.
Zurück zum Zitat Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57(1):289–300.
48.
Zurück zum Zitat Tukey JW. Exploratory data analysis. Reading, MA: Addison-Wesley; 1977. Tukey JW. Exploratory data analysis. Reading, MA: Addison-Wesley; 1977.
49.
Zurück zum Zitat Elston GN, Rockland KS. The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation. Cereb Cortex. 2002;12(10):1071–8.CrossRefPubMed Elston GN, Rockland KS. The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation. Cereb Cortex. 2002;12(10):1071–8.CrossRefPubMed
50.
Zurück zum Zitat Elston GN. Cortical heterogeneity: implications for visual processing and polysensory integration. J Neurocytol. 2002;31(3–5):317–35.CrossRefPubMed Elston GN. Cortical heterogeneity: implications for visual processing and polysensory integration. J Neurocytol. 2002;31(3–5):317–35.CrossRefPubMed
51.
Zurück zum Zitat Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol. 2010;50:295–322.CrossRef Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol. 2010;50:295–322.CrossRef
52.
Zurück zum Zitat Romano C, Sesma MA, McDonald CT, O'Malley K, Van den Pol AN, Olney JW. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol. 1995;355(3):455–69.CrossRefPubMed Romano C, Sesma MA, McDonald CT, O'Malley K, Van den Pol AN, Olney JW. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol. 1995;355(3):455–69.CrossRefPubMed
53.
Zurück zum Zitat Hadel S, Wirth C, Rapp M, Gallinat J, Schubert F. Effects of age and sex on the concentrations of glutamate and glutamine in the human brain. JMRI-J Magn Reson Imaging. 2013;38(6):1480–7.CrossRef Hadel S, Wirth C, Rapp M, Gallinat J, Schubert F. Effects of age and sex on the concentrations of glutamate and glutamine in the human brain. JMRI-J Magn Reson Imaging. 2013;38(6):1480–7.CrossRef
54.
Zurück zum Zitat Sailasuta N, Ernst T, Chang L. Regional variations and the effects of age and gender on glutamate concentrations in the human brain. Magn Reson Imaging. 2008;26(5):667–75.PubMedCentralCrossRefPubMed Sailasuta N, Ernst T, Chang L. Regional variations and the effects of age and gender on glutamate concentrations in the human brain. Magn Reson Imaging. 2008;26(5):667–75.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Tsamis KI, Mytilinaios DG, Njau SN, Baloyannis SJ. Glutamate Receptors in Human Caudate Nucleus in Normal Aging and Alzheimer’s Disease. Curr Alzheimer Res. 2013;10(5):469–75.CrossRefPubMed Tsamis KI, Mytilinaios DG, Njau SN, Baloyannis SJ. Glutamate Receptors in Human Caudate Nucleus in Normal Aging and Alzheimer’s Disease. Curr Alzheimer Res. 2013;10(5):469–75.CrossRefPubMed
56.
Zurück zum Zitat Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D, et al. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy–implications for excitotoxicity. PLoS One. 2010;5(11), e14020.PubMedCentralCrossRefPubMed Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D, et al. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy–implications for excitotoxicity. PLoS One. 2010;5(11), e14020.PubMedCentralCrossRefPubMed
57.
Zurück zum Zitat Notenboom RG, Hampson DR, Jansen GH, van Rijen PC, van Veelen CW, van Nieuwenhuizen O, et al. Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain. 2006;129(Pt 1):96–107.PubMed Notenboom RG, Hampson DR, Jansen GH, van Rijen PC, van Veelen CW, van Nieuwenhuizen O, et al. Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain. 2006;129(Pt 1):96–107.PubMed
58.
Zurück zum Zitat Menard C, Quirion R. Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways. PLoS One. 2012;7(1), e28666.PubMedCentralCrossRefPubMed Menard C, Quirion R. Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways. PLoS One. 2012;7(1), e28666.PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Car H, Stefaniuk R, Wiśniewska R. Effect of MPEP in Morris water maze in adult and old rats. Pharmacol Rep. 2006;59(1):88–93. Car H, Stefaniuk R, Wiśniewska R. Effect of MPEP in Morris water maze in adult and old rats. Pharmacol Rep. 2006;59(1):88–93.
60.
Zurück zum Zitat Leuzy A, Zimmer ER, Dubois J, Pruessner J, Cooperman C, Soucy JP, et al. In vivo characterization of metabotropic glutamate receptor type 5 abnormalities in behavioral variant FTD. Brain Struct Funct. 2015. doi:10.1007/s00429-014-0978-3. Leuzy A, Zimmer ER, Dubois J, Pruessner J, Cooperman C, Soucy JP, et al. In vivo characterization of metabotropic glutamate receptor type 5 abnormalities in behavioral variant FTD. Brain Struct Funct. 2015. doi:10.​1007/​s00429-014-0978-3.
61.
Zurück zum Zitat Rousset OG, Collins DL, Rahmim A, Wong DF. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med. 2008;49(7):1097–106.PubMedCentralCrossRefPubMed Rousset OG, Collins DL, Rahmim A, Wong DF. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med. 2008;49(7):1097–106.PubMedCentralCrossRefPubMed
62.
Zurück zum Zitat Kagedal M, Cselenyi Z, Nyberg S, Raboisson P, Stahle L, Stenkrona P, et al. A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 - estimating occupancy in the absence of a reference region. NeuroImage. 2013;82:160–9.CrossRefPubMed Kagedal M, Cselenyi Z, Nyberg S, Raboisson P, Stahle L, Stenkrona P, et al. A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 - estimating occupancy in the absence of a reference region. NeuroImage. 2013;82:160–9.CrossRefPubMed
63.
Zurück zum Zitat DeLorenzo C, Milak MS, Brennan KG, Kumar JS, Mann JJ, Parsey RV. In vivo positron emission tomography imaging with [(1)(1)C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Eur J Nucl Med Mol Imaging. 2011;38(6):1083–94.PubMedCentralCrossRefPubMed DeLorenzo C, Milak MS, Brennan KG, Kumar JS, Mann JJ, Parsey RV. In vivo positron emission tomography imaging with [(1)(1)C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Eur J Nucl Med Mol Imaging. 2011;38(6):1083–94.PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat Mathews WB, Kuwabara H, Stansfield K, Valentine H, Alexander M, Kumar A, et al. Dose-dependent, saturable occupancy of the metabotropic glutamate subtype 5 receptor by fenobam as measured with [11C] ABP688 PET imaging. Synapse. 2014;68(12):565–73. Mathews WB, Kuwabara H, Stansfield K, Valentine H, Alexander M, Kumar A, et al. Dose-dependent, saturable occupancy of the metabotropic glutamate subtype 5 receptor by fenobam as measured with [11C] ABP688 PET imaging. Synapse. 2014;68(12):565–73.
65.
Zurück zum Zitat Daggett L, Sacaan A, Akong M, Rao S, Hess S, Liaw C, et al. Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5. Neuropharmacology. 1995;34(8):871–86.CrossRefPubMed Daggett L, Sacaan A, Akong M, Rao S, Hess S, Liaw C, et al. Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5. Neuropharmacology. 1995;34(8):871–86.CrossRefPubMed
66.
Zurück zum Zitat Patel S, Hamill TG, Connolly B, Jagoda E, Li W, Gibson RE. Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [18F]F-PEB. Nucl Med Biol. 2007;34(8):1009–17.CrossRefPubMed Patel S, Hamill TG, Connolly B, Jagoda E, Li W, Gibson RE. Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [18F]F-PEB. Nucl Med Biol. 2007;34(8):1009–17.CrossRefPubMed
67.
Zurück zum Zitat DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N, Abdallah C, et al. In vivo ketamine-induced changes in [11C]ABP688 binding to metabotropic glutamate receptors subtype 5. Biol Psychiatry. 2015;77(3):266–75. DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N, Abdallah C, et al. In vivo ketamine-induced changes in [11C]ABP688 binding to metabotropic glutamate receptors subtype 5. Biol Psychiatry. 2015;77(3):266–75.
68.
Zurück zum Zitat Wyckhuys T, Verhaeghe J, Wyffels L, Langlois X, Schmidt M, Stroobants S, et al. N-acetylcysteine- and MK-801-induced changes in glutamate levels do not affect in vivo binding of metabotropic glutamate 5 receptor radioligand 11C-ABP688 in rat brain. J Nucl Med. 2013;54(11):1954–61.CrossRefPubMed Wyckhuys T, Verhaeghe J, Wyffels L, Langlois X, Schmidt M, Stroobants S, et al. N-acetylcysteine- and MK-801-induced changes in glutamate levels do not affect in vivo binding of metabotropic glutamate 5 receptor radioligand 11C-ABP688 in rat brain. J Nucl Med. 2013;54(11):1954–61.CrossRefPubMed
69.
Zurück zum Zitat Zimmer ER, Parent MJ, Leuzy A, Aliaga A, Aliaga A, Moquin L, et al. Imaging in vivo glutamate fluctuations with [C]ABP688: a GLT-1 challenge with ceftriaxone. J Cereb Blood Flow Metab. 2015;35:1169–74. Zimmer ER, Parent MJ, Leuzy A, Aliaga A, Aliaga A, Moquin L, et al. Imaging in vivo glutamate fluctuations with [C]ABP688: a GLT-1 challenge with ceftriaxone. J Cereb Blood Flow Metab. 2015;35:1169–74.
Metadaten
Titel
Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [11C]ABP688 PET
verfasst von
Jonathan M. DuBois
Olivier G. Rousset
Jared Rowley
Manuel Porras-Betancourt
Andrew J. Reader
Aurelie Labbe
Gassan Massarweh
Jean-Paul Soucy
Pedro Rosa-Neto
Eliane Kobayashi
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 1/2016
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-015-3167-6

Weitere Artikel der Ausgabe 1/2016

European Journal of Nuclear Medicine and Molecular Imaging 1/2016 Zur Ausgabe