Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 10/2017

20.06.2017 | Editorial

Players of ‘hypoxia orchestra’ – what is the role of FMISO?

verfasst von: Takuya Toyonaga, Kenji Hirata, Tohru Shiga, Tamaki Nagara

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 10/2017

Einloggen, um Zugang zu erhalten

Excerpt

Hypoxia is one of the most important factors for exacerbating malignancy, including brain tumors [13]. Hypoxia induces radioresistance [4], chemoresistance [5], HRE-related gene transcription [6], and hypermethylation of tumor suppressor genes [7], making tumor cells more aggressive. These phenomena interact with one another such that the entire set of mechanisms could be described as ‘Hypoxia Orchestra playing Symphony Malignancy’. Of the above cascades, the correlation between hypoxia and HRE-related gene transcription has been well studied. The key player is HIF as the ‘principal conductor of the Orchestra’. HIF leads and controls HRE-related gene translation in hypoxia. In normoxia, HIFα is very unstable, easily degraded by HIF hydroxylases. When the oxygen partial pressure is significantly low owing to rapid tumor growth or a large amount of oxygen consumption, HIF hydroxylases are inactivated, making HIFα more stable. Stable HIFα makes a conjugate with HIF1β, and that conjugates bind to HRE on the DNA and drives transcription of proteins from downstream genes that impact tumor malignancy, such as cell migration, energy metabolism, angiogenic signaling, transcriptional regulation, growth and apoptosis [6]. Over many years, L Bekaert, J.S. Guillamo and coauthors have contributed a significant body of research concerning glioma. Maintaining their focus on malignancy and the prognosis of glioma, they approached these subjects from the standpoints of treatment strategy [8, 9], gene mutation [10], the methylation of DNA [11], and molecular mechanisms [12]. They also performed imaging studies of glioma [13, 14]. …
Literatur
1.
Zurück zum Zitat Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res. 2008;14(9):2623–30. doi:10.1158/1078-0432.CCR-07-4995.CrossRefPubMedPubMedCentral Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res. 2008;14(9):2623–30. doi:10.​1158/​1078-0432.​CCR-07-4995.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Kawai N, Lin W, Cao WD, Ogawa D, Miyake K, Haba R, et al. Correlation between 18F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging. 2014;41(10):1870–8. doi:10.1007/s00259-014-2776-9.CrossRefPubMed Kawai N, Lin W, Cao WD, Ogawa D, Miyake K, Haba R, et al. Correlation between 18F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging. 2014;41(10):1870–8. doi:10.​1007/​s00259-014-2776-9.CrossRefPubMed
3.
Zurück zum Zitat Toyonaga T, Yamaguchi S, Hirata K, Kobayashi K, Manabe O, Watanabe S, et al. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor. Eur J Nucl Med Mol Imaging. 2017;44(4):611–9. doi:10.1007/s00259-016-3541-z.CrossRefPubMed Toyonaga T, Yamaguchi S, Hirata K, Kobayashi K, Manabe O, Watanabe S, et al. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor. Eur J Nucl Med Mol Imaging. 2017;44(4):611–9. doi:10.​1007/​s00259-016-3541-z.CrossRefPubMed
4.
Zurück zum Zitat Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9(4):442–58.CrossRefPubMedPubMedCentral Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9(4):442–58.CrossRefPubMedPubMedCentral
8.
9.
Zurück zum Zitat Duntze J, Litre CF, Eap C, Theret E, Debreuve A, Jovenin N, et al. Implanted carmustine wafers followed by concomitant radiochemotherapy to treat newly diagnosed malignant gliomas: prospective, observational, multicenter study on 92 cases. Ann Surg Oncol. 2013;20(6):2065–72. doi:10.1245/s10434-012-2764-x.CrossRefPubMed Duntze J, Litre CF, Eap C, Theret E, Debreuve A, Jovenin N, et al. Implanted carmustine wafers followed by concomitant radiochemotherapy to treat newly diagnosed malignant gliomas: prospective, observational, multicenter study on 92 cases. Ann Surg Oncol. 2013;20(6):2065–72. doi:10.​1245/​s10434-012-2764-x.CrossRefPubMed
11.
Zurück zum Zitat Lechapt-Zalcman E, Levallet G, Dugue AE, Vital A, Diebold MD, Menei P, et al. O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and low MGMT-encodedprotein expression as prognostic markers in glioblastoma patients treated with biodegradable carmustine wafer implants after initial surgery followed by radiotherapy with concomitant and adjuvant temozolomide. Cancer. 2012;118(18):4545–54. doi:10.1002/cncr.27441. Lechapt-Zalcman E, Levallet G, Dugue AE, Vital A, Diebold MD, Menei P, et al. O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and low MGMT-encodedprotein expression as prognostic markers in glioblastoma patients treated with biodegradable carmustine wafer implants after initial surgery followed by radiotherapy with concomitant and adjuvant temozolomide. Cancer. 2012;118(18):4545–54. doi:10.​1002/​cncr.​27441.
12.
Zurück zum Zitat Guillamo JS, de Bouard S, Valable S, Marteau L, Leuraud P, Marie Y, et al. Molecular mechanisms underlying effects of epidermal growth factor receptor inhibition on invasion, proliferation, and angiogenesis in experimental glioma. Clin Cancer Res. 2009;15(11):3697–704. doi:10.1158/1078-0432.CCR-08-2042.CrossRefPubMed Guillamo JS, de Bouard S, Valable S, Marteau L, Leuraud P, Marie Y, et al. Molecular mechanisms underlying effects of epidermal growth factor receptor inhibition on invasion, proliferation, and angiogenesis in experimental glioma. Clin Cancer Res. 2009;15(11):3697–704. doi:10.​1158/​1078-0432.​CCR-08-2042.CrossRefPubMed
13.
Zurück zum Zitat Corroyer-Dulmont A, Peres EA, Petit E, Guillamo JS, Varoqueaux N, Roussel S, et al. Detection of glioblastoma response to temozolomide combined with bevacizumab based on muMRI and muPET imaging reveals [18F]-fluoro-L-thymidine as an early and robust predictive marker for treatment efficacy. Neuro-Oncology. 2013;15(1):41–56. doi:10.1093/neuonc/nos260.CrossRefPubMed Corroyer-Dulmont A, Peres EA, Petit E, Guillamo JS, Varoqueaux N, Roussel S, et al. Detection of glioblastoma response to temozolomide combined with bevacizumab based on muMRI and muPET imaging reveals [18F]-fluoro-L-thymidine as an early and robust predictive marker for treatment efficacy. Neuro-Oncology. 2013;15(1):41–56. doi:10.​1093/​neuonc/​nos260.CrossRefPubMed
15.
Zurück zum Zitat Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60(24):7075–83.PubMed Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60(24):7075–83.PubMed
16.
Zurück zum Zitat De Bouard S, Guillamo JS, Christov C, Lefevre N, Brugieres P, Gola E, et al. Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin. Hum Gene Ther. 2003;14(9):883–95. doi:10.1089/104303403765701178.CrossRefPubMed De Bouard S, Guillamo JS, Christov C, Lefevre N, Brugieres P, Gola E, et al. Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin. Hum Gene Ther. 2003;14(9):883–95. doi:10.​1089/​1043034037657011​78.CrossRefPubMed
19.
Zurück zum Zitat Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39(5):760–70. doi:10.1007/s00259-011-2037-0.CrossRefPubMed Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39(5):760–70. doi:10.​1007/​s00259-011-2037-0.CrossRefPubMed
20.
Zurück zum Zitat Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20. doi:10.1007/s00401-016-1545-1.CrossRefPubMed Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20. doi:10.​1007/​s00401-016-1545-1.CrossRefPubMed
21.
Zurück zum Zitat Toyonaga T, Hirata K, Yamaguchi S, Hatanaka KC, Yuzawa S, Manabe O, et al. 18F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors. Eur J Nucl Med Mol Imaging. 2016;43(8):1469–76. doi:10.1007/s00259-016-3320-x.CrossRefPubMed Toyonaga T, Hirata K, Yamaguchi S, Hatanaka KC, Yuzawa S, Manabe O, et al. 18F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors. Eur J Nucl Med Mol Imaging. 2016;43(8):1469–76. doi:10.​1007/​s00259-016-3320-x.CrossRefPubMed
Metadaten
Titel
Players of ‘hypoxia orchestra’ – what is the role of FMISO?
verfasst von
Takuya Toyonaga
Kenji Hirata
Tohru Shiga
Tamaki Nagara
Publikationsdatum
20.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 10/2017
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-017-3754-9

Weitere Artikel der Ausgabe 10/2017

European Journal of Nuclear Medicine and Molecular Imaging 10/2017 Zur Ausgabe