Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 13/2018

06.07.2018 | Original Article

Amyloid involvement in subcortical regions predicts cognitive decline

verfasst von: Soo Hyun Cho, Jeong-Hyeon Shin, Hyemin Jang, Seongbeom Park, Hee Jin Kim, Si Eun Kim, Seung Joo Kim, Yeshin Kim, Jin San Lee, Duk L. Na, Samuel N. Lockhart, Gil D. Rabinovici, Joon-Kyung Seong, Sang Won Seo, For the Alzheimer’s Disease Neuroimaging Initiative

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 13/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

We estimated whether amyloid involvement in subcortical regions may predict cognitive impairment, and established an amyloid staging scheme based on degree of subcortical amyloid involvement.

Methods

Data from 240 cognitively normal older individuals, 393 participants with mild cognitive impairment, and 126 participants with Alzheimer disease were acquired at Alzheimer’s Disease Neuroimaging Initiative sites. To assess subcortical involvement, we analyzed amyloid deposition in amygdala, putamen, and caudate nucleus. We staged participants into a 3-stage model based on cortical and subcortical amyloid involvement: 382 with no cortical or subcortical involvement as stage 0, 165 with cortical but no subcortical involvement as stage 1, and 203 with both cortical and subcortical involvement as stage 2.

Results

Amyloid accumulation was first observed in cortical regions and spread down to the putamen, caudate nucleus, and amygdala. In longitudinal analysis, changes in MMSE, ADAS-cog 13, FDG PET SUVR, and hippocampal volumes were steepest in stage 2 followed by stage 1 then stage 0 (p value <0.001). Stage 2 showed steeper changes in MMSE score (β [SE] = −0.02 [0.004], p < 0.001), ADAS-cog 13 (0.05 [0.01], p < 0.001), FDG PET SUVR (−0.0008 [0.0003], p = 0.004), and hippocampal volumes (−4.46 [0.65], p < 0.001) compared to stage 1.

Conclusions

We demonstrated a downward spreading pattern of amyloid, suggesting that amyloid accumulates first in neocortex followed by subcortical structures. Furthermore, our new finding suggested that an amyloid staging scheme based on subcortical involvement might reveal how differential regional accumulation of amyloid affects cognitive decline through functional and structural changes of the brain.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.CrossRefPubMedCentral Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.CrossRefPubMedCentral
2.
Zurück zum Zitat Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefPubMedCentral Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefPubMedCentral
3.
Zurück zum Zitat Thal DR, Rub U, Orantes M, Braak H. Phases of a beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.CrossRef Thal DR, Rub U, Orantes M, Braak H. Phases of a beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.CrossRef
4.
Zurück zum Zitat Braak H, Braak E. Alzheimer's disease: striatal amyloid deposits and neurofibrillary changes. J Neuropathol Exp Neurol. 1990;49:215–24.CrossRefPubMedCentral Braak H, Braak E. Alzheimer's disease: striatal amyloid deposits and neurofibrillary changes. J Neuropathol Exp Neurol. 1990;49:215–24.CrossRefPubMedCentral
5.
Zurück zum Zitat Beach TG, Sue LI, Walker DG, Sabbagh MN, Serrano G, Dugger BN, et al. Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer's disease: implications for amyloid imaging. J Alzheimers Dis. 2012;28:869–76.CrossRefPubMedCentral Beach TG, Sue LI, Walker DG, Sabbagh MN, Serrano G, Dugger BN, et al. Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer's disease: implications for amyloid imaging. J Alzheimers Dis. 2012;28:869–76.CrossRefPubMedCentral
6.
Zurück zum Zitat Thal DR, Beach TG, Zanette M, Heurling K, Chakrabarty A, Ismail A, et al. [(18)F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer's disease: specific detection of advanced phases of amyloid-beta pathology. Alzheimers Dement. 2015;11:975–85.CrossRef Thal DR, Beach TG, Zanette M, Heurling K, Chakrabarty A, Ismail A, et al. [(18)F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer's disease: specific detection of advanced phases of amyloid-beta pathology. Alzheimers Dement. 2015;11:975–85.CrossRef
7.
Zurück zum Zitat Wolf DS, Gearing M, Snowdon DA, Mori H, Markesbery WR, Mirra SS. Progression of regional neuropathology in Alzheimer disease and normal elderly: findings from the Nun study. Alzheimer Dis Assoc Disord. 1999;13:226–31.CrossRef Wolf DS, Gearing M, Snowdon DA, Mori H, Markesbery WR, Mirra SS. Progression of regional neuropathology in Alzheimer disease and normal elderly: findings from the Nun study. Alzheimer Dis Assoc Disord. 1999;13:226–31.CrossRef
8.
Zurück zum Zitat Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol. 2016;80:247–58.CrossRefPubMedCentral Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol. 2016;80:247–58.CrossRefPubMedCentral
9.
Zurück zum Zitat Seo SW, Ayakta N, Grinberg LT, Villeneuve S, Lehmann M, Reed B, et al. Regional correlations between [11C]PIB PET and post-mortem burden of amyloid-beta pathology in a diverse neuropathological cohort. Neuroimage Clin. 2017;13:130–7.CrossRefPubMedCentral Seo SW, Ayakta N, Grinberg LT, Villeneuve S, Lehmann M, Reed B, et al. Regional correlations between [11C]PIB PET and post-mortem burden of amyloid-beta pathology in a diverse neuropathological cohort. Neuroimage Clin. 2017;13:130–7.CrossRefPubMedCentral
10.
Zurück zum Zitat Stepan-Buksakowska I, Szabo N, Horinek D, Toth E, Hort J, Warner J, et al. Cortical and subcortical atrophy in Alzheimer disease: parallel atrophy of thalamus and hippocampus. Alzheimer Dis Assoc Disord. 2014;28:65–72.CrossRefPubMedCentral Stepan-Buksakowska I, Szabo N, Horinek D, Toth E, Hort J, Warner J, et al. Cortical and subcortical atrophy in Alzheimer disease: parallel atrophy of thalamus and hippocampus. Alzheimer Dis Assoc Disord. 2014;28:65–72.CrossRefPubMedCentral
11.
Zurück zum Zitat Ma X, Li Z, Jing B, Liu H, Li D, Li H, et al. Identify the atrophy of Alzheimer's disease, mild cognitive impairment and normal aging using morphometric MRI analysis. Front Aging Neurosci. 2016;8:243.CrossRefPubMedCentral Ma X, Li Z, Jing B, Liu H, Li D, Li H, et al. Identify the atrophy of Alzheimer's disease, mild cognitive impairment and normal aging using morphometric MRI analysis. Front Aging Neurosci. 2016;8:243.CrossRefPubMedCentral
12.
Zurück zum Zitat Doan NT, Engvig A, Zaske K, Persson K, Lund MJ, Kaufmann T, et al. Distinguishing early and late brain aging from the Alzheimer's disease spectrum: consistent morphological patterns across independent samples. Neuroimage. 2017;158:282–95.CrossRefPubMedCentral Doan NT, Engvig A, Zaske K, Persson K, Lund MJ, Kaufmann T, et al. Distinguishing early and late brain aging from the Alzheimer's disease spectrum: consistent morphological patterns across independent samples. Neuroimage. 2017;158:282–95.CrossRefPubMedCentral
13.
Zurück zum Zitat Chung SJ, Shin JH, Cho KH, Lee Y, Sohn YH, Seong JK, et al. Subcortical shape analysis of progressive mild cognitive impairment in Parkinson's disease. Mov Disord. 2017;32:1447–56.CrossRefPubMedCentral Chung SJ, Shin JH, Cho KH, Lee Y, Sohn YH, Seong JK, et al. Subcortical shape analysis of progressive mild cognitive impairment in Parkinson's disease. Mov Disord. 2017;32:1447–56.CrossRefPubMedCentral
14.
Zurück zum Zitat Koo DL, Shin JH, Lim JS, Seong JK, Joo EY. Changes in subcortical shape and cognitive function in patients with chronic insomnia. Sleep Med. 2017;35:23–6.CrossRefPubMedCentral Koo DL, Shin JH, Lim JS, Seong JK, Joo EY. Changes in subcortical shape and cognitive function in patients with chronic insomnia. Sleep Med. 2017;35:23–6.CrossRefPubMedCentral
15.
Zurück zum Zitat Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization. Neurology. 2010;74:201–9.CrossRefPubMedCentral Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization. Neurology. 2010;74:201–9.CrossRefPubMedCentral
16.
Zurück zum Zitat Hsu YY, Schuff N, Du AT, Mark K, Zhu X, Hardin D, et al. Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. J Magn Reson Imaging. 2002;16:305–10.CrossRefPubMedCentral Hsu YY, Schuff N, Du AT, Mark K, Zhu X, Hardin D, et al. Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. J Magn Reson Imaging. 2002;16:305–10.CrossRefPubMedCentral
17.
Zurück zum Zitat Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging. 2011;32:1207–18.CrossRefPubMedCentral Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging. 2011;32:1207–18.CrossRefPubMedCentral
18.
Zurück zum Zitat Cho Y, Seong JK, Shin SY, Jeong Y, Kim JH, Qiu AQ, et al. A multi-resolution scheme for distortion-minimizing mapping between human subcortical structures based on geodesic construction on Riemannian manifolds. Neuroimage. 2011;57:1376–92.CrossRefPubMedCentral Cho Y, Seong JK, Shin SY, Jeong Y, Kim JH, Qiu AQ, et al. A multi-resolution scheme for distortion-minimizing mapping between human subcortical structures based on geodesic construction on Riemannian manifolds. Neuroimage. 2011;57:1376–92.CrossRefPubMedCentral
19.
Zurück zum Zitat Cho Y, Seong JK, Jeong Y, Shin SY. Alzheimer's disease neuroimaging I. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage. 2012;59:2217–30.CrossRef Cho Y, Seong JK, Jeong Y, Shin SY. Alzheimer's disease neuroimaging I. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage. 2012;59:2217–30.CrossRef
20.
Zurück zum Zitat Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54:70–7.CrossRefPubMedCentral Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54:70–7.CrossRefPubMedCentral
21.
Zurück zum Zitat Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ. In vivo staging of regional amyloid deposition. Neurology. 2017;89:2031–8.CrossRefPubMedCentral Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ. In vivo staging of regional amyloid deposition. Neurology. 2017;89:2031–8.CrossRefPubMedCentral
22.
Zurück zum Zitat Hanseeuw BJ, Betensky RA, Mormino EC, Schultz AP, Sepulcre J, Becker JA, et al. PET staging of amyloidosis using striatum. Alzheimers Dement. 2018. Hanseeuw BJ, Betensky RA, Mormino EC, Schultz AP, Sepulcre J, Becker JA, et al. PET staging of amyloidosis using striatum. Alzheimers Dement. 2018.
23.
Zurück zum Zitat Beach TG, Thal DR, Zanette M, Smith A, Buckley C. Detection of striatal amyloid plaques with [18F]flutemetamol: validation with postmortem histopathology. J Alzheimers Dis. 2016;52:863–73.CrossRefPubMedCentral Beach TG, Thal DR, Zanette M, Smith A, Buckley C. Detection of striatal amyloid plaques with [18F]flutemetamol: validation with postmortem histopathology. J Alzheimers Dis. 2016;52:863–73.CrossRefPubMedCentral
24.
Zurück zum Zitat Shah N, Frey KA, Muller ML, Petrou M, Kotagal V, Koeppe RA, et al. Striatal and cortical beta-Amyloidopathy and cognition in Parkinson's disease. Mov Disord. 2016;31:111–7.CrossRefPubMedCentral Shah N, Frey KA, Muller ML, Petrou M, Kotagal V, Koeppe RA, et al. Striatal and cortical beta-Amyloidopathy and cognition in Parkinson's disease. Mov Disord. 2016;31:111–7.CrossRefPubMedCentral
25.
Zurück zum Zitat Dickerson BC, Wolk DA. Biomarker-based prediction of progression in MCI: comparison of AD signature and hippocampal volume with spinal fluid amyloid-β and tau. Front Aging Neurosci. 2013;5. Dickerson BC, Wolk DA. Biomarker-based prediction of progression in MCI: comparison of AD signature and hippocampal volume with spinal fluid amyloid-β and tau. Front Aging Neurosci. 2013;5.
26.
Zurück zum Zitat Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC, Aisen PS, et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol. 2012;72:578–86.CrossRefPubMedCentral Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC, Aisen PS, et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann Neurol. 2012;72:578–86.CrossRefPubMedCentral
27.
Zurück zum Zitat Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73:754–60.CrossRefPubMedCentral Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73:754–60.CrossRefPubMedCentral
28.
Zurück zum Zitat Doraiswamy PM, Sperling RA, Johnson K, Reiman EM, Wong TZ, Sabbagh MN, et al. Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study. Mol Psychiatry. 2014;19:1044–51.CrossRefPubMedCentral Doraiswamy PM, Sperling RA, Johnson K, Reiman EM, Wong TZ, Sabbagh MN, et al. Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study. Mol Psychiatry. 2014;19:1044–51.CrossRefPubMedCentral
29.
Zurück zum Zitat Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci. 2007;27:6174–84.CrossRefPubMedCentral Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci. 2007;27:6174–84.CrossRefPubMedCentral
Metadaten
Titel
Amyloid involvement in subcortical regions predicts cognitive decline
verfasst von
Soo Hyun Cho
Jeong-Hyeon Shin
Hyemin Jang
Seongbeom Park
Hee Jin Kim
Si Eun Kim
Seung Joo Kim
Yeshin Kim
Jin San Lee
Duk L. Na
Samuel N. Lockhart
Gil D. Rabinovici
Joon-Kyung Seong
Sang Won Seo
For the Alzheimer’s Disease Neuroimaging Initiative
Publikationsdatum
06.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 13/2018
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-4081-5

Weitere Artikel der Ausgabe 13/2018

European Journal of Nuclear Medicine and Molecular Imaging 13/2018 Zur Ausgabe