Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 8/2021

22.01.2021 | Original Article

Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of 18F-FDG in healthy volunteers

verfasst von: Guobing Liu, Pengcheng Hu, Haojun Yu, Hui Tan, Yiqiu Zhang, Hongyan Yin, Yan Hu, Jianying Gu, Hongcheng Shi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To investigate the feasibility of ultra-low-activity total-body positron emission tomography (PET) dynamic imaging for quantifying kinetic metrics of 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) in normal organs and to verify its clinical relevance with full-activity imaging.

Methods

Dynamic total-body PET imaging was performed in 20 healthy volunteers, with eight using full activity (3.7 MBq/kg) of 18F-FDG and 12 using 10× activity reduction (0.37 MBq/kg). Image contrast, in terms of liver-to-muscle ratio (LMR), liver-to-blood ratio (LBR), and blood-to-muscle ratio (BMR) of radioactivity concentrations were assessed. A two-tissue compartment model was fitted to the time-to-activity curves in organs based on regions of interest (ROIs) delineation using PMOD, and constant rates (k1, k2, and k3) were generated. Kinetic constants, corresponding coefficients of variance (CoVs), image contrast, radiation dose, prompt counts, and data size were compared between full- and low-activity groups.

Results

All constant rates, corresponding CoVs, and image contrast in different organs were comparable with none significant differences between full- and ultra-low-activity groups. PET images in the ultra-low-activity group generated significantly lower effective radiation dose (median, 0.419 vs. 4.886 mSv, P < 0.001), reduced prompt counts (median, 2.79 vs. 55.68 billion, P < 0.001), and smaller data size (median, 71.11 vs. 723.18 GB, P < 0.001).

Conclusion

Total-body dynamic PET imaging using 10× reduction of injected activity could achieve relevant kinetic metrics of 18F-FDG and comparable image contrast with full-activity imaging. Activity reduction results in significant decrease of radiation dose and data size, rendering it more acceptable and easier for data reconstruction, transmission, and storage for clinical practice.
Literatur
1.
Zurück zum Zitat Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285–91.CrossRef Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285–91.CrossRef
2.
Zurück zum Zitat Cherry SR. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol. 2004;49(3):R13–48.CrossRef Cherry SR. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol. 2004;49(3):R13–48.CrossRef
3.
Zurück zum Zitat Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, et al. PET tumor metabolism in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17(8):2400–9.CrossRef Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, et al. PET tumor metabolism in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17(8):2400–9.CrossRef
4.
Zurück zum Zitat Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A. Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Eur J Nucl Med Mol Imaging. 2007;34(6):868–77.CrossRef Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A. Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Eur J Nucl Med Mol Imaging. 2007;34(6):868–77.CrossRef
5.
Zurück zum Zitat Liu P, Huang G, Dong S, Wan L. Kinetic analysis of experimental rabbit tumour and inflammation model with 18F-FDG PET/CT. Nuklearmedizin. 2009;48(4):153–8.CrossRef Liu P, Huang G, Dong S, Wan L. Kinetic analysis of experimental rabbit tumour and inflammation model with 18F-FDG PET/CT. Nuklearmedizin. 2009;48(4):153–8.CrossRef
6.
Zurück zum Zitat Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. concept, acquisition protocol optimization and clinical application. Phys Med Biol. 2013;58(20):7391–418.CrossRef Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. concept, acquisition protocol optimization and clinical application. Phys Med Biol. 2013;58(20):7391–418.CrossRef
7.
Zurück zum Zitat Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46(2):501–18.CrossRef Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46(2):501–18.CrossRef
8.
Zurück zum Zitat Fujimura Y, Kimura Y, Simeon FG, Dickstein LP, Pike VW, Innis RB, et al. Biodistribution and radiation dosimetry in humans of a new PET ligand, 18F-PBR06, to image translocator protein (18 kDa). J Nucl Med. 2010;51(1):145–9.CrossRef Fujimura Y, Kimura Y, Simeon FG, Dickstein LP, Pike VW, Innis RB, et al. Biodistribution and radiation dosimetry in humans of a new PET ligand, 18F-PBR06, to image translocator protein (18 kDa). J Nucl Med. 2010;51(1):145–9.CrossRef
9.
Zurück zum Zitat Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381). Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381).
10.
Zurück zum Zitat Zhang X, Badawi RD, Cherry SR, Qi J. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol. 2018;63(13):767–70.CrossRef Zhang X, Badawi RD, Cherry SR, Qi J. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol. 2018;63(13):767–70.CrossRef
11.
Zurück zum Zitat Surti S, Karp JS. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol. 2015;60(13):5343–58.CrossRef Surti S, Karp JS. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol. 2015;60(13):5343–58.CrossRef
12.
Zurück zum Zitat Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Physics. 2020;7(1). Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Physics. 2020;7(1).
13.
Zurück zum Zitat Kaplan S, Zhu YM. Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study. J Digit Imaging. 2019;32(5):773–8.CrossRef Kaplan S, Zhu YM. Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study. J Digit Imaging. 2019;32(5):773–8.CrossRef
14.
Zurück zum Zitat Schaefferkoetter JD, Yan J, Sjoholm T, Townsend DW, Conti M, Tam JK, et al. Quantitative accuracy and lesion detectability of low-dose (18)F-FDG PET for lung cancer screening. J Nucl Med. 2017;58(3):399–405.CrossRef Schaefferkoetter JD, Yan J, Sjoholm T, Townsend DW, Conti M, Tam JK, et al. Quantitative accuracy and lesion detectability of low-dose (18)F-FDG PET for lung cancer screening. J Nucl Med. 2017;58(3):399–405.CrossRef
15.
Zurück zum Zitat Jian Y, Planeta B, Carson RE. Evaluation of bias and variance in low-count OSEM list mode reconstruction. Phys Med Biol. 2015;60(1):15–29.CrossRef Jian Y, Planeta B, Carson RE. Evaluation of bias and variance in low-count OSEM list mode reconstruction. Phys Med Biol. 2015;60(1):15–29.CrossRef
16.
Zurück zum Zitat Schaefferkoetter JD, Yan J, Townsend DW, Conti M. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability. Phys Med Biol. 2015;60(14):5543–56.CrossRef Schaefferkoetter JD, Yan J, Townsend DW, Conti M. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability. Phys Med Biol. 2015;60(14):5543–56.CrossRef
17.
Zurück zum Zitat Hong I, Cho S, Michel CJ, Casey ME, Schaefferkoetter JD. Complementary frame reconstruction: a low-biased dynamic PET technique for low count density data in projection space. Phys Med Biol. 2014;59(18):5441–55.CrossRef Hong I, Cho S, Michel CJ, Casey ME, Schaefferkoetter JD. Complementary frame reconstruction: a low-biased dynamic PET technique for low count density data in projection space. Phys Med Biol. 2014;59(18):5441–55.CrossRef
18.
Zurück zum Zitat Walker MD, Asselin MC, Julyan PJ, Feldmann M, Talbot PS, Jones T, et al. Bias in iterative reconstruction of low-statistics PET data: benefits of a resolution model. Phys Med Biol. 2011;56(4):931–49.CrossRef Walker MD, Asselin MC, Julyan PJ, Feldmann M, Talbot PS, Jones T, et al. Bias in iterative reconstruction of low-statistics PET data: benefits of a resolution model. Phys Med Biol. 2011;56(4):931–49.CrossRef
19.
Zurück zum Zitat Alessio AM, Kinahan PE, Manchanda V, Ghioni V, Aldape L, Parisi MT. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50(10):1570–7.CrossRef Alessio AM, Kinahan PE, Manchanda V, Ghioni V, Aldape L, Parisi MT. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50(10):1570–7.CrossRef
20.
Zurück zum Zitat Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER Total-body PET scanner. J Nucl Med. 2019;60(3):299–303.CrossRef Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER Total-body PET scanner. J Nucl Med. 2019;60(3):299–303.CrossRef
21.
Zurück zum Zitat Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRef Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRef
22.
Zurück zum Zitat ICRP. Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP. 2008;38(1–2):1–197. ICRP. Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP. 2008;38(1–2):1–197.
23.
Zurück zum Zitat Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. AJR Am J Roentgenol. 2010;194(4):881–9.CrossRef Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. AJR Am J Roentgenol. 2010;194(4):881–9.CrossRef
24.
Zurück zum Zitat Zhang X, Zhou J, Cherry SR, Badawi RD, Qi J. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol. 2017;62(6):2465–85.CrossRef Zhang X, Zhou J, Cherry SR, Badawi RD, Qi J. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol. 2017;62(6):2465–85.CrossRef
25.
Zurück zum Zitat Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.PubMed Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.PubMed
26.
Zurück zum Zitat Akaihe H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1983;3(1–7. Akaihe H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1983;3(1–7.
27.
Zurück zum Zitat Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.CrossRef Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.CrossRef
28.
Zurück zum Zitat Miller GE. Asymptotic test statistics for coefficients of variation. Commun Stat-Theor M. 1991;20(10):3351–63.CrossRef Miller GE. Asymptotic test statistics for coefficients of variation. Commun Stat-Theor M. 1991;20(10):3351–63.CrossRef
29.
Zurück zum Zitat Leung EK, Judenhofer MS, Cherry SR, Badawi RD. Performance assessment of a software-based coincidence processor for the EXPLORER total-body PET scanner. Phys Med Biol. 2018;63(18):11N–8N.CrossRef Leung EK, Judenhofer MS, Cherry SR, Badawi RD. Performance assessment of a software-based coincidence processor for the EXPLORER total-body PET scanner. Phys Med Biol. 2018;63(18):11N–8N.CrossRef
30.
Zurück zum Zitat Feng T, Zhao Y, Shi H, Zhang X, Wang G, Badawi RD, et al. Total-body quantitative parametric imaging of early kinetics of FDG. J Nucl Med. 2020. Feng T, Zhao Y, Shi H, Zhang X, Wang G, Badawi RD, et al. Total-body quantitative parametric imaging of early kinetics of FDG. J Nucl Med. 2020.
31.
Zurück zum Zitat Xu J, Gong E, Pauly J, Zaharchuk G. 200x Low-dose PET Reconstruction using Deep Learning; 2017. Xu J, Gong E, Pauly J, Zaharchuk G. 200x Low-dose PET Reconstruction using Deep Learning; 2017.
Metadaten
Titel
Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of 18F-FDG in healthy volunteers
verfasst von
Guobing Liu
Pengcheng Hu
Haojun Yu
Hui Tan
Yiqiu Zhang
Hongyan Yin
Yan Hu
Jianying Gu
Hongcheng Shi
Publikationsdatum
22.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 8/2021
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-020-05173-3

Weitere Artikel der Ausgabe 8/2021

European Journal of Nuclear Medicine and Molecular Imaging 8/2021 Zur Ausgabe