Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 11/2021

11.03.2021 | Original Article

Segmentation of white matter hyperintensities on 18F-FDG PET/CT images with a generative adversarial network

verfasst von: Kyeong Taek Oh, Dongwoo Kim, Byoung Seok Ye, Sangwon Lee, Mijin Yun, Sun Kook Yoo

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 11/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

White matter hyperintensities (WMH) are typically segmented using MRI because WMH are hardly visible on 18F-FDG PET/CT. This retrospective study was conducted to segment WMH and estimate their volumes from 18F-FDG PET with a generative adversarial network (WhyperGAN).

Methods

We selected patients whose interval between MRI and FDG PET/CT scans was within 3 months, from January 2017 to December 2018, and classified them into mild, moderate, and severe groups by following the semiquantitative rating method of Fazekas. For each group, 50 patients were selected, and of them, we randomly selected 35 patients for training and 15 for testing. WMH were automatically segmented from FLAIR MRI with manual adjustment. Patches of WMH were extracted from 18F-FDG PET and segmented MRI. WhyperGAN was compared with H-DenseUnet, a deep learning method widely used for segmentation tasks, for segmentation performance based on the dice similarity coefficient (DSC), recall, and average volume differences (AVD). For volume estimation, the predicted WMH volumes from PET were compared with ground truth volumes.

Results

The DSC values were associated with WMH volumes on MRI. For volumes >60 mL, the DSC values were 0.751 for WhyperGAN and 0.564 for H-DenseUnet. For volumes ≤60 mL, the DSC values rapidly decreased as the volume decreased (0.362 for WhyperGAN vs. 0.237 for H-DenseUnet). For recall, WhyperGAN achieved the highest value in the severe group (0.579 for WhyperGAN vs. 0.509 for H-DenseUnet). For AVD, WhyperGAN achieved the lowest score in the severe group (0.494 for WhyperGAN vs. 0.941 for H-DenseUnet). For the WMH volume estimation, WhyperGAN performed better than H-DenseUnet and yielded excellent correlation coefficients (r = 0.998, 0.983, and 0.908 in the severe, moderate, and mild group).

Conclusions

Although limited by visual analysis, the WhyperGAN based can be used to automatically segment and estimate volumes of WMH from 18F-FDG PET/CT. This would increase the usefulness of 18F-FDG PET/CT for the evaluation of WMH in patients with cognitive impairment.
Literatur
1.
Zurück zum Zitat Fiford CM, Manning EN, Bartlett JW, Cash DM, Malone IB, Ridgway GR, et al. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus. 2017;27(3):249–62.CrossRef Fiford CM, Manning EN, Bartlett JW, Cash DM, Malone IB, Ridgway GR, et al. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus. 2017;27(3):249–62.CrossRef
2.
Zurück zum Zitat Liu CK, Miller BL, Cummings JL, Mehringer CM, Goldberg MA, Howng SL, et al. A quantitative MRI study of vascular dementia. Neurology. 1992;42(1):138–43.CrossRef Liu CK, Miller BL, Cummings JL, Mehringer CM, Goldberg MA, Howng SL, et al. A quantitative MRI study of vascular dementia. Neurology. 1992;42(1):138–43.CrossRef
3.
Zurück zum Zitat Erten-Lyons D, Woltjer R, Kaye J, Mattek N, Dodge HH, Green S, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age. Neurology. 2013;81(11):977–83.CrossRef Erten-Lyons D, Woltjer R, Kaye J, Mattek N, Dodge HH, Green S, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age. Neurology. 2013;81(11):977–83.CrossRef
4.
Zurück zum Zitat Lindemer ER, Greve DN, Fischl B, Augustinack JC, Salat DH. Differential regional distribution of juxtacortical white matter signal abnormalities in aging and Alzheimer’s disease. J Alzheimers Dis. 2017;57(1):293–303.CrossRef Lindemer ER, Greve DN, Fischl B, Augustinack JC, Salat DH. Differential regional distribution of juxtacortical white matter signal abnormalities in aging and Alzheimer’s disease. J Alzheimers Dis. 2017;57(1):293–303.CrossRef
5.
Zurück zum Zitat Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB, Griffith EY, et al. Reconsidering harbingers of dementia: Progression of parietal lobe white matter hyperintensities predicts Alzheimer's disease incidence. Neurobiol Aging. 2015;36(1):27–32.CrossRef Brickman AM, Zahodne LB, Guzman VA, Narkhede A, Meier IB, Griffith EY, et al. Reconsidering harbingers of dementia: Progression of parietal lobe white matter hyperintensities predicts Alzheimer's disease incidence. Neurobiol Aging. 2015;36(1):27–32.CrossRef
6.
Zurück zum Zitat Tosto G, Zimmerman ME, Hamilton JL, Carmichael OT, Brickman AM. Alzheimer's disease neuroimaging I. The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment. Alzheimers Dement. 2015;11(12):1510–9.CrossRef Tosto G, Zimmerman ME, Hamilton JL, Carmichael OT, Brickman AM. Alzheimer's disease neuroimaging I. The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment. Alzheimers Dement. 2015;11(12):1510–9.CrossRef
7.
Zurück zum Zitat Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJ, Vermersch P, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci. 1993;114(1):7–12.CrossRef Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJ, Vermersch P, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci. 1993;114(1):7–12.CrossRef
8.
Zurück zum Zitat Bouter C, Henniges P, Franke TN, Irwin C, Sahlmann CO, Sichler ME, et al. (18)F-FDG-PET detects drastic changes in brain metabolism in the Tg4–42 model of Alzheimer's disease. Front Aging Neurosci. 2018;10:425.CrossRef Bouter C, Henniges P, Franke TN, Irwin C, Sahlmann CO, Sichler ME, et al. (18)F-FDG-PET detects drastic changes in brain metabolism in the Tg4–42 model of Alzheimer's disease. Front Aging Neurosci. 2018;10:425.CrossRef
9.
Zurück zum Zitat Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96.CrossRef Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96.CrossRef
10.
Zurück zum Zitat Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.CrossRef Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.CrossRef
11.
Zurück zum Zitat Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. arXiv e-prints; 2016. pp. arXiv:1611.07004. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. arXiv e-prints; 2016. pp. arXiv:1611.07004.
12.
Zurück zum Zitat Son J, Park SJ, Jung K-H. Retinal Vessel Segmentation in fundoscopic images with generative adversarial networks. arXiv e-prints; 2017. pp. arXiv:1706.09318. Son J, Park SJ, Jung K-H. Retinal Vessel Segmentation in fundoscopic images with generative adversarial networks. arXiv e-prints; 2017. pp. arXiv:1706.09318.
13.
Zurück zum Zitat Huo Y, Xu Z, Bao S, Bermudez C, Plassard AJ, Liu J, et al. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. Medical Imaging 2018: Image Processing; 2018. pp. 1057409. Huo Y, Xu Z, Bao S, Bermudez C, Plassard AJ, Liu J, et al. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. Medical Imaging 2018: Image Processing; 2018. pp. 1057409.
14.
Zurück zum Zitat Das JRP, Pankajakshan V. Brain tumor segmentation using discriminator loss. 2019 National Conference on Communications (NCC); 2019. pp. 1–6. Das JRP, Pankajakshan V. Brain tumor segmentation using discriminator loss. 2019 National Conference on Communications (NCC); 2019. pp. 1–6.
15.
Zurück zum Zitat Chen L, Shen C, Zhou Z, Maquilan G, Albuquerque K, Folkert MR, et al. Automatic PET cervical tumor segmentation by combining deep learning and anatomic prior. Phys Med Biol. 2019;64(8):085019.CrossRef Chen L, Shen C, Zhou Z, Maquilan G, Albuquerque K, Folkert MR, et al. Automatic PET cervical tumor segmentation by combining deep learning and anatomic prior. Phys Med Biol. 2019;64(8):085019.CrossRef
17.
Zurück zum Zitat Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-net convolutional neural network study. PLoS One. 2018;13(4):e0195798.CrossRef Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-net convolutional neural network study. PLoS One. 2018;13(4):e0195798.CrossRef
19.
Zurück zum Zitat Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage. 2015;108:214–24.CrossRef Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage. 2015;108:214–24.CrossRef
20.
Zurück zum Zitat Nie D, Wang L, Gao Y, Shen D. Fully convolutional networks for multi-modality isointense infant brain image segmentation. Proc IEEE Int Symp Biomed Imaging. 2016;2016:1342–5.PubMedPubMedCentral Nie D, Wang L, Gao Y, Shen D. Fully convolutional networks for multi-modality isointense infant brain image segmentation. Proc IEEE Int Symp Biomed Imaging. 2016;2016:1342–5.PubMedPubMedCentral
21.
Zurück zum Zitat Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–6.CrossRef Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–6.CrossRef
22.
Zurück zum Zitat Nie B, Liu H, Chen K, Jiang X, Shan B. A statistical parametric mapping toolbox used for voxel-wise analysis of FDG-PET images of rat brain. PLoS One. 2014;9(9):e108295.CrossRef Nie B, Liu H, Chen K, Jiang X, Shan B. A statistical parametric mapping toolbox used for voxel-wise analysis of FDG-PET images of rat brain. PLoS One. 2014;9(9):e108295.CrossRef
23.
Zurück zum Zitat Tsai JZ, Peng SJ, Chen YW, Wang KW, Li CH, Wang JY, et al. Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction. PLoS One. 2014;9(8):e104011.CrossRef Tsai JZ, Peng SJ, Chen YW, Wang KW, Li CH, Wang JY, et al. Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction. PLoS One. 2014;9(8):e104011.CrossRef
24.
Zurück zum Zitat Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.CrossRef Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.CrossRef
25.
Zurück zum Zitat Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging. 2018;37(12):2663–74.CrossRef Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging. 2018;37(12):2663–74.CrossRef
26.
Zurück zum Zitat Guerrero R, Qin C, Oktay O, Bowles C, Chen L, Joules R, et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage: Clin. 2018;17:918–34.CrossRef Guerrero R, Qin C, Oktay O, Bowles C, Chen L, Joules R, et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage: Clin. 2018;17:918–34.CrossRef
27.
Zurück zum Zitat Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11(3):157–65.CrossRef Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11(3):157–65.CrossRef
28.
Zurück zum Zitat Xu TGY, Bloch I. From neonatal to adult brain MR image segmentation in a few seconds using 3D-like fully convolutional network and transfer learning. 2017 IEEE International Conference on Image Processing (ICIP); 2017. pp. 4417–21. Xu TGY, Bloch I. From neonatal to adult brain MR image segmentation in a few seconds using 3D-like fully convolutional network and transfer learning. 2017 IEEE International Conference on Image Processing (ICIP); 2017. pp. 4417–21.
29.
Zurück zum Zitat Andermatt S, Pezold S, Cattin P. Multi-dimensional gated recurrent units for the segmentation of biomedical 3D-data. Cham: Springer International Publishing; 2016. p. 142–51. Andermatt S, Pezold S, Cattin P. Multi-dimensional gated recurrent units for the segmentation of biomedical 3D-data. Cham: Springer International Publishing; 2016. p. 142–51.
30.
Zurück zum Zitat Li H, Jiang G, Zhang J, Wang R, Wang Z, Zheng WS, et al. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. Neuroimage. 2018;183:650–65.CrossRef Li H, Jiang G, Zhang J, Wang R, Wang Z, Zheng WS, et al. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. Neuroimage. 2018;183:650–65.CrossRef
Metadaten
Titel
Segmentation of white matter hyperintensities on 18F-FDG PET/CT images with a generative adversarial network
verfasst von
Kyeong Taek Oh
Dongwoo Kim
Byoung Seok Ye
Sangwon Lee
Mijin Yun
Sun Kook Yoo
Publikationsdatum
11.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 11/2021
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-021-05285-4

Weitere Artikel der Ausgabe 11/2021

European Journal of Nuclear Medicine and Molecular Imaging 11/2021 Zur Ausgabe