Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 10/2022

28.03.2022 | Original Article

Diagnostic performance of total-body 18F-FDG PET/CT with fast 2-min acquisition for liver tumours: comparison with conventional PET/CT

verfasst von: Yan Hu, Guobing Liu, Haojun Yu, Jianying Gu, Hongcheng Shi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 10/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To comparatively evaluate the diagnostic performances of total-body 18F-fluorodeoxyglucose positron-emission tomography/computed tomography (18F-FDG PET/CT) with fast 2-min acquisition and conventional PET/CT in liver cancer patients.

Methods

This study included 156 patients with liver tumours. Seventy-eight patients underwent total-body PET/CT. PET raw data were reconstructed using acquisition durations of 2 min (G2) and 15 min (G15). Another 78 patients with liver lesions (control patients) underwent conventional uMI780 PET/CT (G780). All patients were evaluated based on TNM staging. The maximum tumour standardized uptake value (tumour SUVmax), mean normal liver SUV (SUVmean), and tumour SUVmax-to-liver SUVmean ratio (TLR) were determined for all patients. G15 data were used as the reference in the lesion detectability analysis. The diagnostic performances of PET/CT in terms of visual parameters and of PET in terms of semi-quantitative parameters such as SUVmax and TLR were evaluated. Receiver operating characteristics (ROC) curve analysis of SUVmax and TLR at G2 was performed. Pathologic findings of surgical specimens served as the gold standard for all patients.

Results

The lesions found in G15 were also noted in G2; three lymph nodes were missed in G2. However, no significant difference was found in the TNM stage among G2, G15, and G780. For benign and malignant lesions, the liver SUVmean in G2 and G15 was higher than that in G780 (all P < 0.05). The tumour SUVmax and TLR in G2 were equivalent to those in G15 and G780 regardless of whether the lesions were benign or malignant. ROC curve analysis (SUVmax cutoff: 4.34, TLR cutoff: 1.34) demonstrated that G2 also had good sensitivity in detecting liver cancer.

Conclusion

The diagnostic performance of total-body PET/CT in G2 was comparable to that in G15 among liver cancer patients. Further, the diagnostic efficiency of total-body PET/CT imaging with fast 2-min acquisition and conventional PET/CT was similar.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
18.
Zurück zum Zitat Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–9. https://doi.org/10.3322/caac.21388.CrossRefPubMed Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–9. https://​doi.​org/​10.​3322/​caac.​21388.CrossRefPubMed
25.
Zurück zum Zitat Xiao J, Yu H, Sui X, Hu Y, Cao Y, Liu G, et al. Can the BMI-based dose regimen be used to reduce injection activity and to obtain a constant image quality in oncological patients by (18)F-FDG total-body PET/CT imaging? Eur J Nucl Med Mol Imaging. 2021;49(1):269–78. https://doi.org/10.1007/s00259-021-05462-5. Xiao J, Yu H, Sui X, Hu Y, Cao Y, Liu G, et al. Can the BMI-based dose regimen be used to reduce injection activity and to obtain a constant image quality in oncological patients by (18)F-FDG total-body PET/CT imaging? Eur J Nucl Med Mol Imaging. 2021;49(1):269–78. https://​doi.​org/​10.​1007/​s00259-021-05462-5.
Metadaten
Titel
Diagnostic performance of total-body 18F-FDG PET/CT with fast 2-min acquisition for liver tumours: comparison with conventional PET/CT
verfasst von
Yan Hu
Guobing Liu
Haojun Yu
Jianying Gu
Hongcheng Shi
Publikationsdatum
28.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 10/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05772-2

Weitere Artikel der Ausgabe 10/2022

European Journal of Nuclear Medicine and Molecular Imaging 10/2022 Zur Ausgabe