Skip to main content
Erschienen in: Abdominal Radiology 6/2015

01.08.2015

Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease

verfasst von: Ilkay S. Idilman, Ali Tuzun, Berna Savas, Atilla Halil Elhan, Azim Celik, Ramazan Idilman, Musturay Karcaaltincaba

Erschienen in: Abdominal Radiology | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The purpose of the present study was to determine liver, pancreas, kidney, and vertebral fat deposition in NAFLD patients by proton density fat fraction (PDFF) using magnetic resonance imaging (MRI) and to evaluate the relationships among them.

Methods

A total of 41 biopsy-proven NAFLD patients underwent MRI-PDFF with IDEAL-IQ. MRI protocol included T1-independent volumetric multi-echo gradient-echo imaging with T2* correction and spectral fat modeling. The MR examinations were performed on a 1.5 HDx MRI system. MRI-PDFF measurements were obtained from liver, pancreas, renal cortex and sinus, and vertebral body. Liver biopsy specimens were retrieved from the archives and evaluated by one pathologist according to NASH CRN.

Results

The median age of the patients was 47 years. The median interval between liver biopsy and MRI examination was 16 days. Mean liver, pancreas, renal cortex, renal sinus, T12 and L1 vertebral body MRI-PDFFs were 18.7%, 5.7%, 1.7%, 51%, 43.2%, and 43.5%, respectively. No correlation between either liver MRI-PDFF or histological steatosis, and other organ MRI-PDFFs was observed. A good correlation between pancreas and vertebral body MRI-PDFFs, and pancreas and renal sinus MRI-PDFFs was observed. Diabetic patients had higher average pancreas MRI-PDFF compared to non-diabetics (12.2%, vs., 4.8%; P = 0.028).

Conclusions

Pancreas and vertebral body MRI-PDFF is well correlated in NAFLD patients and both of them are higher in diabetic patients which may explain increased bone fractures in diabetics. MRI-PDFF can be used to demonstrate fat fractions of different organs and tissues and to understand fat metabolism.
Literatur
2.
Zurück zum Zitat Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology 37:1202–1219PubMedCrossRef Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology 37:1202–1219PubMedCrossRef
3.
Zurück zum Zitat Vuppalanchi R, Chalasani N (2009) Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology 49:306–317PubMedCentralPubMedCrossRef Vuppalanchi R, Chalasani N (2009) Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology 49:306–317PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Lewis JR, Mohanty SR (2010) Nonalcoholic fatty liver disease: a review and update. Dig Dis Sci 55:560–578PubMedCrossRef Lewis JR, Mohanty SR (2010) Nonalcoholic fatty liver disease: a review and update. Dig Dis Sci 55:560–578PubMedCrossRef
6.
Zurück zum Zitat Longo R, Pollesello P, Ricci C, et al. (1995) Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 5:281–285PubMedCrossRef Longo R, Pollesello P, Ricci C, et al. (1995) Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 5:281–285PubMedCrossRef
7.
Zurück zum Zitat Szczepaniak LS, Nurenberg P, Leonard D, et al. (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:462–468CrossRef Szczepaniak LS, Nurenberg P, Leonard D, et al. (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:462–468CrossRef
8.
Zurück zum Zitat Cowin GJ, Jonsson JR, Bauer JD, et al. (2008) Magnetic resonance imaging and spectroscopy for monitoring liver steatosis. J Magn Reson Imaging 28:937–945PubMedCrossRef Cowin GJ, Jonsson JR, Bauer JD, et al. (2008) Magnetic resonance imaging and spectroscopy for monitoring liver steatosis. J Magn Reson Imaging 28:937–945PubMedCrossRef
9.
Zurück zum Zitat Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749PubMedCrossRef Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749PubMedCrossRef
11.
Zurück zum Zitat Reeder SB, Robson PM, Yu H, et al. (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29:1332–1339PubMedCentralPubMedCrossRef Reeder SB, Robson PM, Yu H, et al. (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29:1332–1339PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Yokoo T, Bydder M, Hamilton G, et al. (2009) Nonalcoholic fatty liver disease: diagnostic fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 251:67–76PubMedCentralPubMedCrossRef Yokoo T, Bydder M, Hamilton G, et al. (2009) Nonalcoholic fatty liver disease: diagnostic fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 251:67–76PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Kim H, Taksali SE, Dufour S, et al. (2008) Comparative MR study of hepatic fat quantification using single voxel proton spectroscopy, two point Dixon and three-point IDEAL. Magn Reson Med 59:521–527PubMedCentralPubMedCrossRef Kim H, Taksali SE, Dufour S, et al. (2008) Comparative MR study of hepatic fat quantification using single voxel proton spectroscopy, two point Dixon and three-point IDEAL. Magn Reson Med 59:521–527PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Permutt Z, Le TA, Peterson MR, et al. (2012) Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease—MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther 36:22–29PubMedCentralPubMedCrossRef Permutt Z, Le TA, Peterson MR, et al. (2012) Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease—MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther 36:22–29PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Tang A, Tan J, Sun M, et al. (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431PubMedCentralPubMedCrossRef Tang A, Tan J, Sun M, et al. (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Idilman IS, Aniktar H, Idilman R, et al. (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267:767–775PubMedCrossRef Idilman IS, Aniktar H, Idilman R, et al. (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267:767–775PubMedCrossRef
17.
Zurück zum Zitat Patel NS, Peterson MR, Brenner DA, et al. (2013) Association between novel MRI-estimated pancreatic fat and liver histology-determined steatosis and fibrosis in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 37:630–639PubMedCentralPubMedCrossRef Patel NS, Peterson MR, Brenner DA, et al. (2013) Association between novel MRI-estimated pancreatic fat and liver histology-determined steatosis and fibrosis in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 37:630–639PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Kleiner DE, Brunt EM, Van Natta ML, et al. (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321PubMedCrossRef Kleiner DE, Brunt EM, Van Natta ML, et al. (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321PubMedCrossRef
20.
Zurück zum Zitat World Health Organization (1999) Report of a WHO consultation: definition of metabolic syndrome in definition, diagnosis and classification of diabetes mellitus. Geneva: World Health organization, Department of Noncommunicable Disease Surveillance World Health Organization (1999) Report of a WHO consultation: definition of metabolic syndrome in definition, diagnosis and classification of diabetes mellitus. Geneva: World Health organization, Department of Noncommunicable Disease Surveillance
21.
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef
22.
Zurück zum Zitat Schwenzer NF, Machann J, Martirosian P, et al. (2008) Quantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques. Invest Radiol 43:330–337PubMedCrossRef Schwenzer NF, Machann J, Martirosian P, et al. (2008) Quantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques. Invest Radiol 43:330–337PubMedCrossRef
23.
Zurück zum Zitat Sijens PE, Edens MA, Bakker SJ, Stolk RP (2010) MRI-determined fat content of human liver, pancreas and kidney. World J Gastroenterol 16:1558–1559PubMedCentralPubMedCrossRef Sijens PE, Edens MA, Bakker SJ, Stolk RP (2010) MRI-determined fat content of human liver, pancreas and kidney. World J Gastroenterol 16:1558–1559PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Tushuizen ME, Bunck MC, Pouwels PJ, et al. (2007) Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 30:2916–2921PubMedCrossRef Tushuizen ME, Bunck MC, Pouwels PJ, et al. (2007) Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 30:2916–2921PubMedCrossRef
25.
Zurück zum Zitat Kim SY, Kim H, Cho JY, et al. (2014) Quantitative assessment of pancreatic fat using unenhanced CT: pathologic correlation and clinical implications. Radiology 271:104–112PubMedCrossRef Kim SY, Kim H, Cho JY, et al. (2014) Quantitative assessment of pancreatic fat using unenhanced CT: pathologic correlation and clinical implications. Radiology 271:104–112PubMedCrossRef
26.
Zurück zum Zitat Chunghtai HL, Morgan TM, Rocco M, et al. (2010) Renal sinus fat and poor blood pressure control in middle aged and elderly individuals at risk for cardiovascular events. Hypertension 56:901–906CrossRef Chunghtai HL, Morgan TM, Rocco M, et al. (2010) Renal sinus fat and poor blood pressure control in middle aged and elderly individuals at risk for cardiovascular events. Hypertension 56:901–906CrossRef
27.
Zurück zum Zitat Foster MC, Hwang SJ, Poster SA, et al. (2011) Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension 58:784–790PubMedCentralPubMedCrossRef Foster MC, Hwang SJ, Poster SA, et al. (2011) Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension 58:784–790PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Shen W, Chen J, Punyanitya M, et al. (2007) MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int 18:641–647PubMedCentralPubMedCrossRef Shen W, Chen J, Punyanitya M, et al. (2007) MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int 18:641–647PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Shen W, Scherzer R, Gantz M, et al. (2012) Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab 97:1337–1346PubMedCentralPubMedCrossRef Shen W, Scherzer R, Gantz M, et al. (2012) Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab 97:1337–1346PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Bredella MA, Gill CM, Gerweck AV, et al. (2013) Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology. 269:534–541PubMedCentralPubMedCrossRef Bredella MA, Gill CM, Gerweck AV, et al. (2013) Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology. 269:534–541PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Ergen FB, Gulal G, Yildiz AE, et al. (2013) Fat fraction estimation of the vertebrae in females using the T2*-IDEAL technique in detection of reduced bone mineralization level: comparison with bone mineral densitometry. J Comput Assist Tomogr 38:320–324CrossRef Ergen FB, Gulal G, Yildiz AE, et al. (2013) Fat fraction estimation of the vertebrae in females using the T2*-IDEAL technique in detection of reduced bone mineralization level: comparison with bone mineral densitometry. J Comput Assist Tomogr 38:320–324CrossRef
32.
Zurück zum Zitat Pirgon O, Bilgin H, Tolu I, et al. (2011) Correlation of insulin sensitivity with bone mineral status in obese adolescents with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf) 75:189–195CrossRef Pirgon O, Bilgin H, Tolu I, et al. (2011) Correlation of insulin sensitivity with bone mineral status in obese adolescents with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf) 75:189–195CrossRef
33.
Zurück zum Zitat Campos RM, de Piano A, da Silva PL, et al. (2012) The role of pro/anti-inflammatory adipokines on bone metabolism in NAFLD obese adolescents: effects of long-term interdisciplinary therapy. Endocrine 42:146–156PubMedCrossRef Campos RM, de Piano A, da Silva PL, et al. (2012) The role of pro/anti-inflammatory adipokines on bone metabolism in NAFLD obese adolescents: effects of long-term interdisciplinary therapy. Endocrine 42:146–156PubMedCrossRef
34.
Zurück zum Zitat Pardee PE, Dunn W, Schwimmer JB (2012) Non-alcoholic fatty liver disease is associated with low bone mineral density in obese children. Aliment Pharmacol Ther. 35:248–254PubMedCrossRef Pardee PE, Dunn W, Schwimmer JB (2012) Non-alcoholic fatty liver disease is associated with low bone mineral density in obese children. Aliment Pharmacol Ther. 35:248–254PubMedCrossRef
35.
Zurück zum Zitat Moon SS, Lee YS, Kim SW (2012) Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women. Endocrine 42:423–429PubMedCrossRef Moon SS, Lee YS, Kim SW (2012) Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women. Endocrine 42:423–429PubMedCrossRef
36.
Zurück zum Zitat Karampinos DC, Melkus G, Baum T, et al. (2013) Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS. Magn Reson Med. doi:10.1002/mrm.24775 PubMedCentralPubMed Karampinos DC, Melkus G, Baum T, et al. (2013) Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS. Magn Reson Med. doi:10.​1002/​mrm.​24775 PubMedCentralPubMed
37.
Zurück zum Zitat Gee CS, Nguyen JT, Marquez CJ, et al. (2014) Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. J Magn Reson Imaging. doi:10.1002/jmri.24795 PubMed Gee CS, Nguyen JT, Marquez CJ, et al. (2014) Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. J Magn Reson Imaging. doi:10.​1002/​jmri.​24795 PubMed
38.
Zurück zum Zitat Cornish J, Callon KE, Bava U, et al. (2001) Effects of calcitonin, amylin and calcitonin gene-related peptide on osteoclast development. Bone 29:162–168PubMedCrossRef Cornish J, Callon KE, Bava U, et al. (2001) Effects of calcitonin, amylin and calcitonin gene-related peptide on osteoclast development. Bone 29:162–168PubMedCrossRef
39.
Zurück zum Zitat Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:495–500PubMedCrossRef Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:495–500PubMedCrossRef
40.
Zurück zum Zitat Strotmeyer ES, Cauley JA, Schwartz AV, et al. (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617PubMedCrossRef Strotmeyer ES, Cauley JA, Schwartz AV, et al. (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617PubMedCrossRef
41.
Zurück zum Zitat Janghorbani M, Feskanich D, Willett WC, Hu F (2006) Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care 29:1573–1578PubMedCrossRef Janghorbani M, Feskanich D, Willett WC, Hu F (2006) Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care 29:1573–1578PubMedCrossRef
42.
Zurück zum Zitat Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505PubMedCrossRef Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505PubMedCrossRef
43.
Zurück zum Zitat Patsch JM, Li X, Baum T, et al. (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28:1721–1728PubMedCentralPubMedCrossRef Patsch JM, Li X, Baum T, et al. (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28:1721–1728PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Baum T, Yap SP, Karampinos DC, et al. (2012) Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging 35:117–124PubMedCentralPubMedCrossRef Baum T, Yap SP, Karampinos DC, et al. (2012) Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging 35:117–124PubMedCentralPubMedCrossRef
Metadaten
Titel
Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease
verfasst von
Ilkay S. Idilman
Ali Tuzun
Berna Savas
Atilla Halil Elhan
Azim Celik
Ramazan Idilman
Musturay Karcaaltincaba
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 6/2015
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-015-0385-0

Weitere Artikel der Ausgabe 6/2015

Abdominal Radiology 6/2015 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.