Skip to main content
Erschienen in: Abdominal Radiology 2/2017

21.10.2016 | Commentary

Texture analysis in radiology: Does the emperor have no clothes?

verfasst von: Ronald M. Summers

Erschienen in: Abdominal Radiology | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Texture analysis is more and more frequently used in radiology research. Is this a new technology, and if not, what has changed? Is texture analysis the great diagnostic and prognostic tool we have been searching for in radiology? This commentary answers these questions and places texture analysis into its proper perspective.
Literatur
1.
Zurück zum Zitat Tian F, Hayano K, Kambadakone AR, Sahani DV (2015) Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom Imaging 40:1705–1712CrossRefPubMed Tian F, Hayano K, Kambadakone AR, Sahani DV (2015) Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom Imaging 40:1705–1712CrossRefPubMed
2.
Zurück zum Zitat Canellas R, Mehrkhani F, Patino M, Kambadakone A, Sahani D (2016) Characterization of portal vein thrombosis (neoplastic versus bland) on CT images using software-based texture analysis and thrombus density (Hounsfield units). AJR Am J Roentgenol . doi:10.2214/AJR.15.15928 PubMed Canellas R, Mehrkhani F, Patino M, Kambadakone A, Sahani D (2016) Characterization of portal vein thrombosis (neoplastic versus bland) on CT images using software-based texture analysis and thrombus density (Hounsfield units). AJR Am J Roentgenol . doi:10.​2214/​AJR.​15.​15928 PubMed
3.
Zurück zum Zitat Schieda N, Thornhill RE, Al-Subhi M, et al. (2015) Diagnosis of sarcomatoid renal cell carcinoma with CT: evaluation by qualitative imaging features and texture analysis. AJR Am J Roentgenol 204:1013–1023CrossRefPubMed Schieda N, Thornhill RE, Al-Subhi M, et al. (2015) Diagnosis of sarcomatoid renal cell carcinoma with CT: evaluation by qualitative imaging features and texture analysis. AJR Am J Roentgenol 204:1013–1023CrossRefPubMed
4.
Zurück zum Zitat De Cecco CN, Ciolina M, Caruso D, et al. (2016) Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY) . doi:10.1007/s00261-016-0733-8 PubMed De Cecco CN, Ciolina M, Caruso D, et al. (2016) Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY) . doi:10.​1007/​s00261-016-0733-8 PubMed
5.
Zurück zum Zitat Takahashi N, Takeuchi M, Sasaguri K, et al. (2016) CT negative attenuation pixel distribution and texture analysis for detection of fat in small angiomyolipoma on unenhanced CT. Abdom Radiol (NY) 41:1142–1151CrossRef Takahashi N, Takeuchi M, Sasaguri K, et al. (2016) CT negative attenuation pixel distribution and texture analysis for detection of fat in small angiomyolipoma on unenhanced CT. Abdom Radiol (NY) 41:1142–1151CrossRef
6.
Zurück zum Zitat Zhang GM, Sun H, Shi B, Jin ZY, Xue HD (2016) Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma. Abdom Radiol (NY) . doi:10.1007/s00261-016-0897-2 Zhang GM, Sun H, Shi B, Jin ZY, Xue HD (2016) Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma. Abdom Radiol (NY) . doi:10.​1007/​s00261-016-0897-2
7.
Zurück zum Zitat Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M (2005) Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 23:24–29CrossRefPubMed Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M (2005) Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 23:24–29CrossRefPubMed
8.
Zurück zum Zitat Choi JY, Ro YM (2012) Multiresolution local binary pattern texture analysis combined with variable selection for application to false-positive reduction in computer-aided detection of breast masses on mammograms. Phys Med Biol 57:7029–7052CrossRefPubMed Choi JY, Ro YM (2012) Multiresolution local binary pattern texture analysis combined with variable selection for application to false-positive reduction in computer-aided detection of breast masses on mammograms. Phys Med Biol 57:7029–7052CrossRefPubMed
9.
Zurück zum Zitat Chicklore S, Goh V, Siddique M, et al. (2013) Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140CrossRefPubMed Chicklore S, Goh V, Siddique M, et al. (2013) Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140CrossRefPubMed
10.
Zurück zum Zitat Dang M, Lysack JT, Wu T, et al. (2015) MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. AJNR Am J Neuroradiol 36:166–170CrossRefPubMed Dang M, Lysack JT, Wu T, et al. (2015) MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. AJNR Am J Neuroradiol 36:166–170CrossRefPubMed
11.
Zurück zum Zitat Alobaidli S, McQuaid S, South C, et al. (2014) The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br J Radiol 87:20140369CrossRefPubMedPubMedCentral Alobaidli S, McQuaid S, South C, et al. (2014) The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br J Radiol 87:20140369CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Zhou W, Zhang L, Wang K, et al. (2016) Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging. doi:10.1002/jmri.25454 Zhou W, Zhang L, Wang K, et al. (2016) Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging. doi:10.​1002/​jmri.​25454
13.
Zurück zum Zitat Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266:177–184CrossRefPubMed Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266:177–184CrossRefPubMed
14.
Zurück zum Zitat Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Muller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18:176–196CrossRefPubMed Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Muller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18:176–196CrossRefPubMed
15.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT, et al. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedPubMedCentral Aerts HJ, Velazquez ER, Leijenaar RT, et al. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedPubMedCentral
16.
Zurück zum Zitat Szczypinski PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda–a software package for image texture analysis. Comput Methods Programs Biomed 94:66–76CrossRefPubMed Szczypinski PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda–a software package for image texture analysis. Comput Methods Programs Biomed 94:66–76CrossRefPubMed
19.
Zurück zum Zitat Tesar L, Shimizu A, Smutek D, Kobatake H, Nawano S (2008) Medical image analysis of 3D CT images based on extension of Haralick texture features. Comput Med Imaging Graph 32:513–520CrossRefPubMed Tesar L, Shimizu A, Smutek D, Kobatake H, Nawano S (2008) Medical image analysis of 3D CT images based on extension of Haralick texture features. Comput Med Imaging Graph 32:513–520CrossRefPubMed
20.
Zurück zum Zitat Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E (2016) Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: dependency on radiation dose and reconstruction algorithm. Radiology 279:185–194CrossRefPubMed Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E (2016) Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: dependency on radiation dose and reconstruction algorithm. Radiology 279:185–194CrossRefPubMed
21.
Zurück zum Zitat Guo Q, Shao J, Ruiz VF (2009) Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms. Int J Comput Assist Radiol Surg 4:11–25CrossRefPubMed Guo Q, Shao J, Ruiz VF (2009) Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms. Int J Comput Assist Radiol Surg 4:11–25CrossRefPubMed
22.
Zurück zum Zitat Zheng Y, Keller BM, Ray S, et al. (2015) Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment. Med Phys 42:4149–4160CrossRefPubMedPubMedCentral Zheng Y, Keller BM, Ray S, et al. (2015) Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment. Med Phys 42:4149–4160CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Yao JH, Li J, Summers RM (2009) Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognit 42:1029–1040CrossRefPubMedPubMedCentral Yao JH, Li J, Summers RM (2009) Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognit 42:1029–1040CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Liu J, Wang S, Turkbey EB, et al. (2015) Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features. Med Phys 42:144–153CrossRefPubMed Liu J, Wang S, Turkbey EB, et al. (2015) Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features. Med Phys 42:144–153CrossRefPubMed
25.
Zurück zum Zitat Kwak JT, Xu S, Wood BJ, et al. (2015) Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys 42:2368–2378CrossRefPubMedPubMedCentral Kwak JT, Xu S, Wood BJ, et al. (2015) Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys 42:2368–2378CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Summers RM, Pusanik LM, Malley JD, Hoeg JM (1999) Fractal analysis of virtual endoscopy reconstructions. P Soc Photo-Opt Ins 3660:258–269 Summers RM, Pusanik LM, Malley JD, Hoeg JM (1999) Fractal analysis of virtual endoscopy reconstructions. P Soc Photo-Opt Ins 3660:258–269
27.
Zurück zum Zitat Ledley RS, Huang HK, Rotolo LS (1975) A texture analysis method in classification of coal workers’ pneumoconiosis. Comput Biol Med 5:53–67CrossRefPubMed Ledley RS, Huang HK, Rotolo LS (1975) A texture analysis method in classification of coal workers’ pneumoconiosis. Comput Biol Med 5:53–67CrossRefPubMed
29.
Zurück zum Zitat Abe C, Kahn CE, Jr, Doi K, Katsuragawa S (1992) Computer-aided detection of diffuse liver disease in ultrasound images. Invest Radiol 27:71–77CrossRefPubMed Abe C, Kahn CE, Jr, Doi K, Katsuragawa S (1992) Computer-aided detection of diffuse liver disease in ultrasound images. Invest Radiol 27:71–77CrossRefPubMed
30.
Zurück zum Zitat Rampun A, Zheng L, Malcolm P, Tiddeman B, Zwiggelaar R (2016) Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone. Phys Med Biol 61:4796–4825CrossRefPubMed Rampun A, Zheng L, Malcolm P, Tiddeman B, Zwiggelaar R (2016) Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone. Phys Med Biol 61:4796–4825CrossRefPubMed
31.
Zurück zum Zitat Chan HP, Sahiner B, Petrick N, et al. (1997) Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network. Phys Med Biol 42:549–567CrossRefPubMed Chan HP, Sahiner B, Petrick N, et al. (1997) Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network. Phys Med Biol 42:549–567CrossRefPubMed
32.
Zurück zum Zitat Petrick N, Chan HP, Wei D, et al. (1996) Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. Med Phys 23:1685–1696CrossRefPubMed Petrick N, Chan HP, Wei D, et al. (1996) Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. Med Phys 23:1685–1696CrossRefPubMed
33.
Zurück zum Zitat Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571CrossRefPubMed Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571CrossRefPubMed
34.
Zurück zum Zitat Xu JW, Suzuki K (2014) Max-AUC feature selection in computer-aided detection of polyps in CT colonography. IEEE J Biomed Health Inform 18:585–593CrossRefPubMedPubMedCentral Xu JW, Suzuki K (2014) Max-AUC feature selection in computer-aided detection of polyps in CT colonography. IEEE J Biomed Health Inform 18:585–593CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213:317–320CrossRefPubMed Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213:317–320CrossRefPubMed
36.
Zurück zum Zitat Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an Exciting new technique. IEEE Trans Med Imaging 35:1153–1159CrossRef Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an Exciting new technique. IEEE Trans Med Imaging 35:1153–1159CrossRef
38.
Zurück zum Zitat Roth HR, Lu L, Liu J, et al. (2016) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE TMI 35:1170–1181 Roth HR, Lu L, Liu J, et al. (2016) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE TMI 35:1170–1181
39.
Zurück zum Zitat Shin H-C, Roth HR, Gao M, et al. (2016) Deep convolutional neural networks for computer-aided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35:1285–1298CrossRefPubMed Shin H-C, Roth HR, Gao M, et al. (2016) Deep convolutional neural networks for computer-aided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35:1285–1298CrossRefPubMed
40.
41.
Zurück zum Zitat Fave X, Cook M, Frederick A, et al. (2015) Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput Med Imaging Graph 44:54–61CrossRefPubMed Fave X, Cook M, Frederick A, et al. (2015) Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput Med Imaging Graph 44:54–61CrossRefPubMed
42.
Zurück zum Zitat Fave X, Mackin D, Yang J, et al. (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42:6784–6797CrossRefPubMedPubMedCentral Fave X, Mackin D, Yang J, et al. (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42:6784–6797CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Halligan S, Taylor SA, Dehmeshki J et al. (2006) Computer-assisted detection for CT colonography: external validation. Clin Radiol 61:758–763; discussion 764–755 Halligan S, Taylor SA, Dehmeshki J et al. (2006) Computer-assisted detection for CT colonography: external validation. Clin Radiol 61:758–763; discussion 764–755
44.
Zurück zum Zitat Summers RM, Handwerker LR, Pickhardt PJ, et al. (2008) Performance of a previously validated CT colonography computer-aided detection system in a new patient population. Am J Roentgenol 191:168–174CrossRef Summers RM, Handwerker LR, Pickhardt PJ, et al. (2008) Performance of a previously validated CT colonography computer-aided detection system in a new patient population. Am J Roentgenol 191:168–174CrossRef
Metadaten
Titel
Texture analysis in radiology: Does the emperor have no clothes?
verfasst von
Ronald M. Summers
Publikationsdatum
21.10.2016
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 2/2017
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-016-0950-1

Weitere Artikel der Ausgabe 2/2017

Abdominal Radiology 2/2017 Zur Ausgabe

Classics in Abdominal Imaging

The “butterfly” adrenal gland

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.