Skip to main content
Log in

New prostate cancer prognostic grade group (PGG): Can multiparametric MRI (mpMRI) accurately separate patients with low-, intermediate-, and high-grade cancer?

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Our objective is to determine the accuracy of multiparametric MRI (mpMRI) in predicting pathologic grade of prostate cancer (PCa) after radical prostatectomy (RP) using simple apparent diffusion coefficient metrics and, specifically, whether mpMRI can accurately separate disease into one of two risk categories (low vs. higher grade) or one of three risk categories (low, intermediate, or high grade) corresponding to the new prognostic grade group (PGG) criteria.

Methods

This retrospective, HIPAA-compliant, IRB-approved study included 140 patients with PCa who underwent 3 T mpMRI with endorectal coil and transrectal ultrasound-guided (TRUS-G) biopsy before RP. MpMRI was used to classify lesions using a two-tier (low-grade/PGG 1 vs. high-grade/PGG 2–5) or a three-tier system (low-grade/PGG 1 vs. intermediate-grade/PGG 2 vs. high-grade/PGG 3–5). Accuracy of mpMRI was compared against RP for each system.

Results

The predictive accuracy of mpMRI using the two-tier system is higher than when using three-tier system (0.77 and 0.45, respectively). There were similar rates of undergrading between mpMRI and TRUS-G biopsy compared to RP (16% & 21%; respectively); rate of overgrading was higher for mpMRI vs. TRUS-G biopsy compared to RP (42% & 17%, respectively). When mpMRI and TRUS-G biopsy are combined, rate of undergrading is 1.4% and overgrading is 11%.

Conclusions

MpMRI predictive accuracy is higher when using a two-tier vs. a three-tier system, suggesting that advanced metrics may be necessary to delineate intermediate- from high-grade disease. Rates of under- and overgrading decreased when mpMRI and TRUS-G biopsy are combined, suggesting that these techniques may be complementary in predicting tumor grade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ACS (2014) Prostate Cancer. American Cancer Society. http://www.cancer.org/acs/groups/cid/documents/webcontent/003134-pdf.pdf. 2015

  2. Loeb S, Curnyn C, Sedlander E (2016) Perspectives of prostate cancer patients on Gleason scores and the new grade groups: initial qualitative study. Eur Urol . doi:10.1016/j.eururo.2016.05.039

    PubMed Central  Google Scholar 

  3. Epstein JI, Zelefsky MJ, Sjoberg DD, et al. (2016) A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol 69(3):428–435. doi:10.1016/j.eururo.2015.06.046

    Article  PubMed  Google Scholar 

  4. Morash C, Tey R, Agbassi C, et al. (2015) Active surveillance for the management of localized prostate cancer: guideline recommendations. Can Urol Assoc J 9(5–6):171–178. doi:10.5489/cuaj.2806

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gupta RT, Brown AF, Silverman RK, et al. (2016) Can radiologic staging with multiparametric MRI enhance the accuracy of the Partin tables in predicting organ-confined prostate cancer? Am J Roentgenol . doi:10.2214/AJR.15.15878

    Google Scholar 

  6. Abd-Alazeez M, Ahmed HU, Arya M, et al. (2014) The accuracy of multiparametric MRI in men with negative biopsy and elevated PSA level—can it rule out clinically significant prostate cancer? Urol Oncol . doi:10.1016/j.urolonc.2013.06.007

    PubMed Central  Google Scholar 

  7. Appayya MB, Johnston EW, Punwani S (2015) The role of multi-parametric MRI in loco-regional staging of men diagnosed with early prostate cancer. Curr Opin Urol 25(6):510–517. doi:10.1097/MOU.0000000000000215

    Article  PubMed  Google Scholar 

  8. de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol 202(2):343–351. doi:10.2214/AJR.13.11046

    Article  Google Scholar 

  9. De Visschere PJ, Briganti A, Futterer JJ, et al. (2016) Role of multiparametric magnetic resonance imaging in early detection of prostate cancer. Insights Imaging 7(2):205–214. doi:10.1007/s13244-016-0466-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lista F, Gimbernat H, Caceres F, et al. (2014) Multiparametric magnetic resonance imaging for the assessment of extracapsular invasion and other staging parameters in patients with prostate cancer candidates for radical prostatectomy. Actas Urol Esp 38(5):290–297. doi:10.1016/j.acuro.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  11. Futterer JJ, Briganti A, De Visschere P, et al. (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68(6):1045–1053. doi:10.1016/j.eururo.2015.01.013

    Article  PubMed  Google Scholar 

  12. Ahmed HU, El-Shater Bosaily A, Brown LC, et al. (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet . doi:10.1016/S0140-6736(16)32401-1

    Google Scholar 

  13. Anwar SS, Anwar Khan Z, Shoaib Hamid R, et al. (2014) Assessment of apparent diffusion coefficient values as predictor of aggressiveness in peripheral zone prostate cancer: comparison with Gleason score. ISRN Radiol 2014:263417. doi:10.1155/2014/263417

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bittencourt LK, Barentsz JO, de Miranda LC, Gasparetto EL (2012) Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason grades than TRUS-guided biopsies in peripheral zone tumours. Eur Radiol 22(2):468–475. doi:10.1007/s00330-011-2269-1

    Article  PubMed  Google Scholar 

  15. Dwivedi DK, Kumar R, Bora GS, et al. (2016) Stratification of the aggressiveness of prostate cancer using pre-biopsy multiparametric MRI (mpMRI). NMR Biomed 29(3):232–238. doi:10.1002/nbm.3452

    Article  CAS  PubMed  Google Scholar 

  16. Vos EK, Kobus T, Litjens GJ, et al. (2015) Multiparametric magnetic resonance imaging for discriminating low-grade from high-grade prostate cancer. Invest Radiol 50(8):490–497. doi:10.1097/RLI.0000000000000157

    Article  CAS  PubMed  Google Scholar 

  17. ACR (2015) PI-RADS: Prostate imaging—reporting and data system version 2. http://www.acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/PIRADS/PIRADS%20V2.pdf. Accessed 1 April 2016

  18. Hambrock T, Somford DM, Huisman HJ, et al. (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259(2):453–461. doi:10.1148/radiol.11091409

    Article  PubMed  Google Scholar 

  19. Somford DM, Hambrock T, Hulsbergen-van de Kaa CA, et al. (2012) Initial experience with identifying high-grade prostate cancer using diffusion-weighted MR imaging (DWI) in patients with a Gleason score </= 3 + 3 = 6 upon schematic TRUS-guided biopsy: a radical prostatectomy correlated series. Invest Radiol 47(3):153–158. doi:10.1097/RLI.0b013e31823ea1f0

    PubMed  Google Scholar 

  20. Woo S, Kim SY, Cho JY, Kim SH (2016) Preoperative evaluation of prostate cancer aggressiveness: using ADC and ADC ratio in determining Gleason score. Am J Roentgenol 207(1):114–120. doi:10.2214/AJR.15.15894

    Article  Google Scholar 

  21. Gupta RT, Kauffman CR, Garcia-Reyes K, et al. (2015) Apparent diffusion coefficient values of the benign central zone of the prostate: comparison with low- and high-grade prostate cancer. Am J Roentgenol 205(2):331–336. doi:10.2214/AJR.14.14221

    Article  Google Scholar 

  22. Itatani R, Namimoto T, Kajihara H, et al. (2014) Triage of low-risk prostate cancer patients with PSA levels 10 ng/ml or less: comparison of apparent diffusion coefficient value and transrectal ultrasound-guided target biopsy. Am J Roentgenol 202(5):1051–1057. doi:10.2214/AJR.13.11602

    Article  Google Scholar 

  23. Tay KJ, Gupta RT, Holtz J, et al. (2017) Does mpMRI improve clinical criteria in selecting men with prostate cancer for active surveillance? Prostate Cancer Prostatic Dis . doi:10.1038/pcan.2017.20

    Google Scholar 

  24. Dall’Era MA, Albertsen PC, Bangma C, et al. (2012) Active surveillance for prostate cancer: a systematic review of the literature. Eur Urol 62(6):976–983. doi:10.1016/j.eururo.2012.05.072

    Article  PubMed  Google Scholar 

  25. Cooperberg MR, Cowan JE, Hilton JF, et al. (2011) Outcomes of active surveillance for men with intermediate-risk prostate cancer. J Clin Oncol 29(2):228–234. doi:10.1200/JCO.2010.31.4252

    Article  PubMed  Google Scholar 

  26. van den Bergh RC, Roemeling S, Roobol MJ, et al. (2009) Gleason score 7 screen-detected prostate cancers initially managed expectantly: outcomes in 50 men. BJU Int 103(11):1472–1477. doi:10.1111/j.1464-410X.2008.08281.x

    Article  PubMed  Google Scholar 

  27. Epstein JI, Feng Z, Trock BJ, Pierorazio PM (2012) Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades. Eur Urol 61(5):1019–1024. doi:10.1016/j.eururo.2012.01.050

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cohen MS, Hanley RS, Kurteva T, et al. (2008) Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center experience and an international meta-analysis. Eur Urol 54(2):371–381. doi:10.1016/j.eururo.2008.03.049

    Article  PubMed  Google Scholar 

  29. Boesen L, Chabanova E, Logager V, Balslev I, Thomsen HS (2015) Apparent diffusion coefficient ratio correlates significantly with prostate cancer Gleason score at final pathology. J Magn Reson Imaging 42(2):446–453. doi:10.1002/jmri.24801

    Article  PubMed  Google Scholar 

  30. De Cobelli F, Ravelli S, Esposito A, et al. (2015) Apparent diffusion coefficient value and ratio as noninvasive potential biomarkers to predict prostate cancer grading: comparison with prostate biopsy and radical prostatectomy specimen. Am J Roentgenol 204(3):550–557. doi:10.2214/AJR.14.13146

    Article  Google Scholar 

  31. Kitajima K, Takahashi S, Ueno Y, et al. (2013) Do apparent diffusion coefficient (ADC) values obtained using high b-values with a 3-T MRI correlate better than a transrectal ultrasound (TRUS)-guided biopsy with true Gleason scores obtained from radical prostatectomy specimens for patients with prostate cancer? Eur J Radiol 82(8):1219–1226. doi:10.1016/j.ejrad.2013.02.021

    Article  PubMed  Google Scholar 

  32. Li C, Chen M, Wang J, et al. (2016) Apparent diffusion coefficient values are superior to transrectal ultrasound-guided prostate biopsy for the assessment of prostate cancer aggressiveness. Acta Radiol . doi:10.1177/0284185116639764

    Google Scholar 

  33. Nowak J, Malzahn U, Baur AD, et al. (2016) The value of ADC, T2 signal intensity, and a combination of both parameters to assess Gleason score and primary Gleason grades in patients with known prostate cancer. Acta Radiol 57(1):107–114. doi:10.1177/0284185114561915

    Article  PubMed  Google Scholar 

  34. Peng Y, Jiang Y, Yang C, et al. (2013) Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score–a computer-aided diagnosis development study. Radiology 267(3):787–796. doi:10.1148/radiol.13121454

    Article  PubMed  Google Scholar 

  35. Donati OF, Mazaheri Y, Afaq A, et al. (2014) Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology 271(1):143–152. doi:10.1148/radiol.13130973

    Article  PubMed  Google Scholar 

  36. Lebovici A, Sfrangeu SA, Feier D, et al. (2014) Evaluation of the normal-to-diseased apparent diffusion coefficient ratio as an indicator of prostate cancer aggressiveness. BMC Med Imaging 14:15. doi:10.1186/1471-2342-14-15

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park SY, Oh YT, Jung DC, et al. (2016) Diffusion-weighted imaging (DWI) predicts upgrading of Gleason score in biopsy-proven low-grade prostate cancers. BJU Int . doi:10.1111/bju.13436

    Google Scholar 

  38. Rosenkrantz AB, Triolo MJ, Melamed J, et al. (2015) Whole-lesion apparent diffusion coefficient metrics as a marker of percentage Gleason 4 component within Gleason 7 prostate cancer at radical prostatectomy. J Magn Reson Imaging 41(3):708–714. doi:10.1002/jmri.24598

    Article  PubMed  Google Scholar 

  39. Thormer G, Otto J, Horn LC, et al. (2015) Non-invasive estimation of prostate cancer aggressiveness using diffusion-weighted MRI and 3D proton MR spectroscopy at 3.0 T. Acta Radiol 56(1):121–128. doi:10.1177/0284185113520311

    Article  PubMed  Google Scholar 

  40. Wu CJ, Wang Q, Li H, et al. (2015) DWI-associated entire-tumor histogram analysis for the differentiation of low-grade prostate cancer from intermediate-high-grade prostate cancer. Abdom Imaging 40(8):3214–3221. doi:10.1007/s00261-015-0499-4

    Article  PubMed  Google Scholar 

  41. Gupta RT, Spilseth B, Froemming AT (2016) How and why a generation of radiologists must be trained to accurately interpret prostate mpMRI. Abdom Radiol (NY) 41(5):803–804. doi:10.1007/s00261-016-0745-4

    Article  Google Scholar 

  42. Litjens GJ, Hambrock T, Hulsbergen-van de Kaa C, Barentsz JO, Huisman HJ (2012) Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness. Radiology 265(1):260–266. doi:10.1148/radiol.12112374

    Article  PubMed  Google Scholar 

  43. Mazaheri Y, Vargas HA, Nyman G, et al. (2013) Diffusion-weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-the impact of SNR on ADC measurement. Eur J Radiol 82(10):e515–520. doi:10.1016/j.ejrad.2013.04.041

    Article  PubMed  Google Scholar 

  44. Peng Y, Jiang Y, Antic T, et al. (2014) Apparent diffusion coefficient for prostate cancer imaging: impact of B values. Am J Roentgenol 202(3):W247–253. doi:10.2214/AJR.13.10917

    Article  Google Scholar 

  45. Thormer G, Otto J, Reiss-Zimmermann M, et al. (2012) Diagnostic value of ADC in patients with prostate cancer: influence of the choice of b values. Eur Radiol 22(8):1820–1828. doi:10.1007/s00330-012-2432-3

    Article  PubMed  Google Scholar 

  46. Wibmer AG, Sala E, Hricak H, Vargas HA (2016) The expanding landscape of diffusion-weighted MRI in prostate cancer. Abdom Radiol (NY) 41(5):854–861. doi:10.1007/s00261-016-0646-6

    Article  Google Scholar 

  47. Tay KJ, Gupta RT, Brown AF, Silverman RK, Polascik TJ (2015) Defining the incremental utility of prostate multiparametric magnetic resonance imaging at standard and specialized read in predicting extracapsular extension of prostate cancer. Eur Urol . doi:10.1016/j.eururo.2015.10.041

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contributions of John Madden, M.D., Ph.D., to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan T. Gupta.

Ethics declarations

Funding

There is no internal or external funding for this study. This manuscript is not under consideration elsewhere. This is a HIPAA-compliant, IRB-approved study with waiver of informed consent granted by the local institutional review board.

Financial disclosures/Conflict of interest relevant to this submitted work

Rajan T. Gupta, MD has no financial disclosures or conflicts of interest related to this work; he does serve as a consultant to Bayer Pharma AG, Invivo Corp., and Halyard Health; he also serves on the Speakers Bureau for Bayer Pharma AG. Ms. Holtz, Ms. Silverman, Dr. Tay, Dr. Browning, Dr. Huang, and Dr. Polascik have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study is retrospective in its design and for this type of study formal consent is not required.

Appendix

Appendix

See Tables 5 and 6.

Table 5 Classification of prostate cancer lesions using two-tier vs. three-tier systems with systematic TRUS-guided biopsy and final surgical pathology from radical prostatectomy
Table 6 TRUS-guided biopsy vs. surgical pathology after radical prostatectomy in two-tier and three-tier systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtz, J.N., Silverman, R.K., Tay, K.J. et al. New prostate cancer prognostic grade group (PGG): Can multiparametric MRI (mpMRI) accurately separate patients with low-, intermediate-, and high-grade cancer?. Abdom Radiol 43, 702–712 (2018). https://doi.org/10.1007/s00261-017-1255-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1255-8

Keywords

Navigation