Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 7/2006

01.07.2006 | Original Article

Multiple myeloma in a murine syngeneic model:modulation of growth and angiogenesis by a monoclonal antibody to kininogen

verfasst von: Irma M. Sainz, Irma Isordia-Salas, Ricardo G. Espinola, Walter K. Long, Robin A. Pixley, Robert W. Colman

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 7/2006

Einloggen, um Zugang zu erhalten

Abstract

Multiple myeloma (MM), a B-cell malignancy characterized by proliferation of monoclonal plasma cells remains incurable. Murine plasma cell tumors share common features with human MM. We used two cell lines (B38 and C11C1) derived from P3X63Ag8 myeloma cells. The new cell lines were implanted subcutaneously in the strain of origin (Balb/c mice) and used as a model to monitor the effects of C11C1 monoclonal antibody (mAb) to kininogen (HK). We assessed their behavior by intraperitoneal and subcutaneous implantation, by implanting them together and by treating B38–MM with purified mAb C11C1. We evaluated growth, microvascular density (MVD), and cellular expression of urokinase-type plasminogen activator-receptor (uPAR), fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), bradykinin-1 receptor (B1R), bradykinin-2 receptor (B2R) and HK. We found that both MM-cell-lines are uPAR positive, that mAb C11C1 inhibits its own tumor growth in vivo, slows down B38-MM growth rate when both MM are implanted together and when mAb C11C1 is injected intraperitoneally. MAb C11C1-treated-MM showed decreased MVD and HK binding in vivo without FGF-2, B1R or B2R expression changes. We propose that the B38-extramedullary-myeloma-model is a useful tool to study the interactions of this hematopoietic tumor and its environment and that mAb C11C1 may improve the efficacy of conventional MM treatment with minimal side effects.
Literatur
1.
Zurück zum Zitat Hideshima T, Anderson KC (2002) Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2:927–937CrossRefPubMed Hideshima T, Anderson KC (2002) Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2:927–937CrossRefPubMed
2.
Zurück zum Zitat Criteria for the classification of monoclonal gammopathies, (2003) multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121:749–57 Criteria for the classification of monoclonal gammopathies, (2003) multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121:749–57
3.
Zurück zum Zitat Damaj G, Mohty M, Vey N, Dincan E, Bouabdallah R, Faucher C, Stoppa AM, Gastaut JA (2004) Features of extramedullary and extraosseous multiple myeloma: a report of 19 patients from a single center. Eur J Haematol 73:402–406CrossRefPubMed Damaj G, Mohty M, Vey N, Dincan E, Bouabdallah R, Faucher C, Stoppa AM, Gastaut JA (2004) Features of extramedullary and extraosseous multiple myeloma: a report of 19 patients from a single center. Eur J Haematol 73:402–406CrossRefPubMed
4.
Zurück zum Zitat Roschke V, Hausner P, Kopantzev E, Pumphrey JG, Riminucci M, Hilbert DM, Rudikoff S (1998) Disseminated growth of murine plasmacytoma: similarities to multiple myeloma. Cancer Res 58:535–541PubMed Roschke V, Hausner P, Kopantzev E, Pumphrey JG, Riminucci M, Hilbert DM, Rudikoff S (1998) Disseminated growth of murine plasmacytoma: similarities to multiple myeloma. Cancer Res 58:535–541PubMed
5.
Zurück zum Zitat Song JS, Sainz IM, Cosenza SC, Isordia-Salas I, Bior A, Bradford HN, Guo YL, Pixley RA, Reddy EP, Colman RW (2004) Inhibition of tumor angiogenesis in vivo by a monoclonal antibody targeted to domain 5 of high molecular weight kininogen. Blood 104:2065–2072CrossRefPubMed Song JS, Sainz IM, Cosenza SC, Isordia-Salas I, Bior A, Bradford HN, Guo YL, Pixley RA, Reddy EP, Colman RW (2004) Inhibition of tumor angiogenesis in vivo by a monoclonal antibody targeted to domain 5 of high molecular weight kininogen. Blood 104:2065–2072CrossRefPubMed
6.
Zurück zum Zitat Annamalai AE, Stewart GJ, Hansel B, Memoli M, Chiu HC, Manuel DW, Doshi K, Colman RW (1986) Expression of factor V on human umbilical vein endothelial cells is modulated by cell injury. Arteriosclerosis 6:196–202PubMed Annamalai AE, Stewart GJ, Hansel B, Memoli M, Chiu HC, Manuel DW, Doshi K, Colman RW (1986) Expression of factor V on human umbilical vein endothelial cells is modulated by cell injury. Arteriosclerosis 6:196–202PubMed
7.
Zurück zum Zitat Schmaier AH, Schutsky D, Farber A, Silver LD, Bradford HN, Colman RW (1987) Determination of the bifunctional properties of high molecular weight kininogen by studies with monoclonal antibodies directed to each of its chains. J Biol Chem 262:1405–1411PubMed Schmaier AH, Schutsky D, Farber A, Silver LD, Bradford HN, Colman RW (1987) Determination of the bifunctional properties of high molecular weight kininogen by studies with monoclonal antibodies directed to each of its chains. J Biol Chem 262:1405–1411PubMed
8.
Zurück zum Zitat Carlsson G, Gullberg B, Hafstrom L (1983) Estimation of liver tumor volume using different formulas - an experimental study in rats. J Cancer Res Clin Oncol 105:20–23CrossRefPubMed Carlsson G, Gullberg B, Hafstrom L (1983) Estimation of liver tumor volume using different formulas - an experimental study in rats. J Cancer Res Clin Oncol 105:20–23CrossRefPubMed
9.
Zurück zum Zitat Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23:755–761CrossRefPubMed Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23:755–761CrossRefPubMed
10.
Zurück zum Zitat Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, Pezzella F, Viale G, Weidner N, Harris AL, Dirix LY (1996) Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32A:2474–2484CrossRef Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, Pezzella F, Viale G, Weidner N, Harris AL, Dirix LY (1996) Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32A:2474–2484CrossRef
11.
Zurück zum Zitat Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358PubMed Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358PubMed
12.
Zurück zum Zitat Bisping G, Leo R, Wenning D, Dankbar B, Padro T, Kropff M, Scheffold C, Kroger M, Mesters RM, Berdel WE, Kienast J (2003) Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 101:2775–2783CrossRefPubMed Bisping G, Leo R, Wenning D, Dankbar B, Padro T, Kropff M, Scheffold C, Kroger M, Mesters RM, Berdel WE, Kienast J (2003) Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 101:2775–2783CrossRefPubMed
13.
Zurück zum Zitat Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1993) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073 Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1993) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073
14.
Zurück zum Zitat Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R, Greipp PR, Rajkumar SV (2003) Expression of VEGF and its receptors by myeloma cells. Leukemia 17:2025–2031CrossRefPubMed Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R, Greipp PR, Rajkumar SV (2003) Expression of VEGF and its receptors by myeloma cells. Leukemia 17:2025–2031CrossRefPubMed
15.
Zurück zum Zitat Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845CrossRefPubMed Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845CrossRefPubMed
16.
Zurück zum Zitat Gardner AM, Olah ME (2003) Distinct protein kinase C isoforms mediate regulation of vascular endothelial growth factor expression by A2A adenosine receptor activation and phorbol esters in pheochromocytoma PC12 cells. J Biol Chem 278:15421–15428CrossRefPubMed Gardner AM, Olah ME (2003) Distinct protein kinase C isoforms mediate regulation of vascular endothelial growth factor expression by A2A adenosine receptor activation and phorbol esters in pheochromocytoma PC12 cells. J Biol Chem 278:15421–15428CrossRefPubMed
17.
Zurück zum Zitat Knox AJ, Corbett L, Stocks J, Holland E, Zhu YM, Pang L (2001) Human airway smooth muscle cells secrete vascular endothelial growth factor: up-regulation by bradykinin via a protein kinase C and prostanoid-dependent mechanism. FASEB J 15:2480–2488CrossRefPubMed Knox AJ, Corbett L, Stocks J, Holland E, Zhu YM, Pang L (2001) Human airway smooth muscle cells secrete vascular endothelial growth factor: up-regulation by bradykinin via a protein kinase C and prostanoid-dependent mechanism. FASEB J 15:2480–2488CrossRefPubMed
18.
Zurück zum Zitat Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP (1997) The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 17:5629–5639PubMed Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP (1997) The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 17:5629–5639PubMed
19.
Zurück zum Zitat Mazure NM, Chen EY, Laderoute KR, Giaccia AJ (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90:3322–3331PubMed Mazure NM, Chen EY, Laderoute KR, Giaccia AJ (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90:3322–3331PubMed
20.
Zurück zum Zitat Basilico C, Moscatelli D (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165PubMed Basilico C, Moscatelli D (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165PubMed
21.
Zurück zum Zitat Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73:161–195PubMed Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73:161–195PubMed
22.
Zurück zum Zitat Klein S, Giancotti FG, Presta M, Albelda SM, Buck CA, Rifkin DB (1993) Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol Biol Cell 4:973–982PubMed Klein S, Giancotti FG, Presta M, Albelda SM, Buck CA, Rifkin DB (1993) Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol Biol Cell 4:973–982PubMed
23.
Zurück zum Zitat Taub JS, Guo R, Leeb-Lundberg LM, Madden JF, Daaka Y (2003) Bradykinin receptor subtype 1 expression and function in prostate cancer. Cancer Res 63:2037–2041PubMed Taub JS, Guo R, Leeb-Lundberg LM, Madden JF, Daaka Y (2003) Bradykinin receptor subtype 1 expression and function in prostate cancer. Cancer Res 63:2037–2041PubMed
24.
Zurück zum Zitat Barki-Harrington L, Bookout AL, Wang G, Lamb ME, Leeb-Lundberg LM, Daaka Y (2003) Requirement for direct cross-talk between B1 and B2 kinin receptors for the proliferation of androgen-insensitive prostate cancer PC3 cells. Biochem J 371:581–587CrossRefPubMed Barki-Harrington L, Bookout AL, Wang G, Lamb ME, Leeb-Lundberg LM, Daaka Y (2003) Requirement for direct cross-talk between B1 and B2 kinin receptors for the proliferation of androgen-insensitive prostate cancer PC3 cells. Biochem J 371:581–587CrossRefPubMed
25.
Zurück zum Zitat Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Muller-Esterl W, Maeda H (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98:29–35CrossRefPubMed Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Muller-Esterl W, Maeda H (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98:29–35CrossRefPubMed
26.
Zurück zum Zitat Ikeda Y, Hayashi I, Kamoshita E, Yamazaki A, Endo H, Ishihara K, Yamashina S, Tsutsumi Y, Matsubara H, Majima M (2004) Host stromal bradykinin B2 receptor signaling facilitates tumor-associated angiogenesis and tumor growth. Cancer Res 64:5178–5185CrossRefPubMed Ikeda Y, Hayashi I, Kamoshita E, Yamazaki A, Endo H, Ishihara K, Yamashina S, Tsutsumi Y, Matsubara H, Majima M (2004) Host stromal bradykinin B2 receptor signaling facilitates tumor-associated angiogenesis and tumor growth. Cancer Res 64:5178–5185CrossRefPubMed
27.
Zurück zum Zitat Hideshima T, Chauhan D, Podar K, Schlossman RL, Richardson P, Anderson KC (2001) Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 28:607–612CrossRefPubMed Hideshima T, Chauhan D, Podar K, Schlossman RL, Richardson P, Anderson KC (2001) Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 28:607–612CrossRefPubMed
28.
Zurück zum Zitat Zhao Y, Qiu Q, Mahdi F, Shariat-Madar Z, Rojkjaer R, Schmaier AH (2001) Assembly and activation of HK-PK complex on endothelial cells results in bradykinin liberation and NO formation. Am J Physiol Heart Circ Physiol 280:H1821–H1829PubMed Zhao Y, Qiu Q, Mahdi F, Shariat-Madar Z, Rojkjaer R, Schmaier AH (2001) Assembly and activation of HK-PK complex on endothelial cells results in bradykinin liberation and NO formation. Am J Physiol Heart Circ Physiol 280:H1821–H1829PubMed
29.
Zurück zum Zitat Hayashi I, Amano H, Yoshida S, Kamata K, Kamata M, Inukai M, Fujita T, Kumagai Y, Furudate S, Majima M (2002) Suppressed angiogenesis in kininogen-deficiencies. Lab Invest 82:871–880PubMed Hayashi I, Amano H, Yoshida S, Kamata K, Kamata M, Inukai M, Fujita T, Kumagai Y, Furudate S, Majima M (2002) Suppressed angiogenesis in kininogen-deficiencies. Lab Invest 82:871–880PubMed
30.
Zurück zum Zitat Colman RW, Pixley RA, Najamunnisa S, Yan W, Wang J, Mazar A, McCrae KR (1997) Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 100:1481–1487PubMed Colman RW, Pixley RA, Najamunnisa S, Yan W, Wang J, Mazar A, McCrae KR (1997) Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 100:1481–1487PubMed
31.
Zurück zum Zitat Mahdi F, Shariat-Madar Z, Kuo A, Carinato M, Cines DB, Schmaier AH (2004) Mapping the interaction between high molecular mass kininogen and the urokinase plasminogen activator receptor. J Biol Chem 279:16621–16628CrossRefPubMed Mahdi F, Shariat-Madar Z, Kuo A, Carinato M, Cines DB, Schmaier AH (2004) Mapping the interaction between high molecular mass kininogen and the urokinase plasminogen activator receptor. J Biol Chem 279:16621–16628CrossRefPubMed
32.
Zurück zum Zitat Rakic JM, Maillard C, Jost M, Bajou K, Masson V, Devy L, Lambert V, Foidart JM, Noel A (2003) Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci 60:463–473CrossRefPubMed Rakic JM, Maillard C, Jost M, Bajou K, Masson V, Devy L, Lambert V, Foidart JM, Noel A (2003) Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci 60:463–473CrossRefPubMed
33.
Zurück zum Zitat Mondino A, Blasi F (2004) uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol 25:450–455CrossRefPubMed Mondino A, Blasi F (2004) uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol 25:450–455CrossRefPubMed
34.
Zurück zum Zitat Venema VJ, Marrero MB, Venema RC (1996) Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton. Biochem Biophys Res Commun 226:703–710CrossRefPubMed Venema VJ, Marrero MB, Venema RC (1996) Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton. Biochem Biophys Res Commun 226:703–710CrossRefPubMed
35.
Zurück zum Zitat Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE, Venema RC (2001) Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J Biol Chem 276:16587–16591CrossRefPubMed Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE, Venema RC (2001) Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J Biol Chem 276:16587–16591CrossRefPubMed
36.
Zurück zum Zitat Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139PubMedCrossRef Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139PubMedCrossRef
37.
Zurück zum Zitat Hayashi R, Yamashita N, Matsui S, Fujita T, Araya J, Sassa K, Arai N, Yoshida Y, Kashii T, Maruyama M, Sugiyama E, Kobayashi M (2000) Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK- and p38 MAPK-dependent mechanisms. Eur Respir J 16:452–458CrossRefPubMed Hayashi R, Yamashita N, Matsui S, Fujita T, Araya J, Sassa K, Arai N, Yoshida Y, Kashii T, Maruyama M, Sugiyama E, Kobayashi M (2000) Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK- and p38 MAPK-dependent mechanisms. Eur Respir J 16:452–458CrossRefPubMed
38.
Zurück zum Zitat Smith DR, Polverini PJ, Kunkel SL, Orringer MB, Whyte RI, Burdick MD, Wilke CA, Strieter RM (1994) Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179:1409–1415CrossRefPubMed Smith DR, Polverini PJ, Kunkel SL, Orringer MB, Whyte RI, Burdick MD, Wilke CA, Strieter RM (1994) Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179:1409–1415CrossRefPubMed
39.
Zurück zum Zitat Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MD, Strieter RM (1996) Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97:2792–2802PubMed Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MD, Strieter RM (1996) Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97:2792–2802PubMed
40.
Zurück zum Zitat Yuan A, Chen JJ, Yao PL, Yang PC (2005) The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci 10:853–865PubMedCrossRef Yuan A, Chen JJ, Yao PL, Yang PC (2005) The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci 10:853–865PubMedCrossRef
41.
Zurück zum Zitat Tobler A, Moser B, Dewald B, Geiser T, Studer H, Baggiolini M, Fey MF (1993) Constitutive expression of interleukin-8 and its receptor in human myeloid and lymphoid leukemia. Blood 82:2517–2525PubMed Tobler A, Moser B, Dewald B, Geiser T, Studer H, Baggiolini M, Fey MF (1993) Constitutive expression of interleukin-8 and its receptor in human myeloid and lymphoid leukemia. Blood 82:2517–2525PubMed
42.
Zurück zum Zitat Jonca F, Ortega N, Gleizes PE, Bertrand N, Plouet J (1997) Cell release of bioactive fibroblast growth factor 2 by exon 6-encoded sequence of vascular endothelial growth factor. J Biol Chem 272:24203–24209CrossRefPubMed Jonca F, Ortega N, Gleizes PE, Bertrand N, Plouet J (1997) Cell release of bioactive fibroblast growth factor 2 by exon 6-encoded sequence of vascular endothelial growth factor. J Biol Chem 272:24203–24209CrossRefPubMed
43.
Zurück zum Zitat Ribatti D, Leali D, Vacca A, Giuliani R, Gualandris A, Roncali L, Nolli ML, Presta M (1999) in vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor-2. J Cell Sci 112 (Pt 23):4213–4221PubMed Ribatti D, Leali D, Vacca A, Giuliani R, Gualandris A, Roncali L, Nolli ML, Presta M (1999) in vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor-2. J Cell Sci 112 (Pt 23):4213–4221PubMed
44.
Zurück zum Zitat Ossowski L, Clunie G, Masucci MT, Blasi F (1991) in vivo paracrine interaction between urokinase and its receptor: effect on tumor cell invasion. J Cell Biol 115:1107–1112CrossRefPubMed Ossowski L, Clunie G, Masucci MT, Blasi F (1991) in vivo paracrine interaction between urokinase and its receptor: effect on tumor cell invasion. J Cell Biol 115:1107–1112CrossRefPubMed
45.
Zurück zum Zitat Chapman HA (1997) Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol 9:714–724CrossRefPubMed Chapman HA (1997) Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol 9:714–724CrossRefPubMed
46.
Zurück zum Zitat Nehls V, Herrmann R (1996) The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res 51:347–364CrossRefPubMed Nehls V, Herrmann R (1996) The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res 51:347–364CrossRefPubMed
47.
Zurück zum Zitat Colman RW, Pixley RA, Sainz IM, Song JS, Isordia-Salas I, Muhamed SN, Powell JA, Jr Mousa SA (2003) Inhibition of angiogenesis by antibody blocking the action of proangiogenic high-molecular-weight kininogen. J Thromb Haemost 1:164–170CrossRefPubMed Colman RW, Pixley RA, Sainz IM, Song JS, Isordia-Salas I, Muhamed SN, Powell JA, Jr Mousa SA (2003) Inhibition of angiogenesis by antibody blocking the action of proangiogenic high-molecular-weight kininogen. J Thromb Haemost 1:164–170CrossRefPubMed
48.
Zurück zum Zitat Colman RW (1992) Contributions of Mayme Williams to the elucidation of the multiple functions of plasma kininogens. Thromb Haemost 68:99–101PubMed Colman RW (1992) Contributions of Mayme Williams to the elucidation of the multiple functions of plasma kininogens. Thromb Haemost 68:99–101PubMed
Metadaten
Titel
Multiple myeloma in a murine syngeneic model:modulation of growth and angiogenesis by a monoclonal antibody to kininogen
verfasst von
Irma M. Sainz
Irma Isordia-Salas
Ricardo G. Espinola
Walter K. Long
Robin A. Pixley
Robert W. Colman
Publikationsdatum
01.07.2006
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 7/2006
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-005-0068-8

Weitere Artikel der Ausgabe 7/2006

Cancer Immunology, Immunotherapy 7/2006 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.