Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 4/2013

01.04.2013 | Original article

Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas

verfasst von: Muhammad Baghdadi, Hiroko Nagao, Hironori Yoshiyama, Hisaya Akiba, Hideo Yagita, Hirotoshi Dosaka-Akita, Masahisa Jinushi

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Cancer vaccines have been developed to instruct the endogenous immune responses to autologous tumors and to generate durable clinical responses. However, the therapeutic benefits of cancer vaccines remain insufficient due to the multiple immunosuppressive signals delivered by tumors. Thus, to improve the clinical efficacy of cancer immunotherapy, it is important to develop new modalities to overcome immunosuppressive tumor microenvironments and elicit effective antitumor immune responses. In this study, we show that novel monoclonal antibodies (mAbs) specifically targeting either T cell immunoglobulin mucin protein-3 (TIM-3) or T cell immunoglobulin mucin protein-4 (TIM-4) enhance the therapeutic effects of vaccination against established B16 murine melanomas. This is true for vaccination with irradiated B16 melanoma cells engineered to express the flt3 ligand gene (FVAX). More importantly, combining anti-TIM-3 and anti-TIM-4 mAbs markedly increased vaccine-induced antitumor responses against established B16 melanoma. TIM-3 blockade mainly stimulated antitumor effector activities via natural killer cell-dependent mechanisms, while CD8+ T cells served as the main effectors induced by anti-TIM-4 mAb. Our findings reveal that therapeutic manipulation of TIM-3 and TIM-4 may provide a novel strategy for improving the clinical efficacy of cancer immunotherapy.
Literatur
2.
Zurück zum Zitat Andrews DM, Maraskovsky E, Smyth MJ (2008) Cancer vaccines for established cancer: how to make them better? Immunol Rev 222:242–255PubMedCrossRef Andrews DM, Maraskovsky E, Smyth MJ (2008) Cancer vaccines for established cancer: how to make them better? Immunol Rev 222:242–255PubMedCrossRef
3.
Zurück zum Zitat Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296PubMedCrossRef Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296PubMedCrossRef
4.
Zurück zum Zitat Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81PubMedCrossRef Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81PubMedCrossRef
5.
Zurück zum Zitat Peggs KS, Segal NH, Allison JP (2007) Targeting immunosupportive cancer therapies: accentuate the positive, eliminate the negative. Cancer Cell 12:192–199PubMedCrossRef Peggs KS, Segal NH, Allison JP (2007) Targeting immunosupportive cancer therapies: accentuate the positive, eliminate the negative. Cancer Cell 12:192–199PubMedCrossRef
6.
Zurück zum Zitat Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264PubMedCrossRef Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264PubMedCrossRef
7.
Zurück zum Zitat Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165PubMedCrossRef Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165PubMedCrossRef
8.
Zurück zum Zitat Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212PubMedCrossRef Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212PubMedCrossRef
9.
Zurück zum Zitat Woo S-R, Turnis ME, Goldberg MV et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72:917–927PubMedCrossRef Woo S-R, Turnis ME, Goldberg MV et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72:917–927PubMedCrossRef
10.
Zurück zum Zitat Fourcade J, Sun Z, Pagliano O et al (2012) CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72:887–896PubMedCrossRef Fourcade J, Sun Z, Pagliano O et al (2012) CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72:887–896PubMedCrossRef
11.
Zurück zum Zitat Fourcade J, Sun Z, Benallaoua M et al (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186PubMedCrossRef Fourcade J, Sun Z, Benallaoua M et al (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186PubMedCrossRef
12.
Zurück zum Zitat Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2012) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194CrossRef Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2012) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194CrossRef
13.
Zurück zum Zitat Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRef Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRef
14.
Zurück zum Zitat Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedCrossRef Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedCrossRef
15.
Zurück zum Zitat Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–5244PubMedCrossRef Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–5244PubMedCrossRef
16.
Zurück zum Zitat Ngiow SF, Teng MW, Smyth MJ (2011) Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res 71:6567–6571PubMedCrossRef Ngiow SF, Teng MW, Smyth MJ (2011) Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res 71:6567–6571PubMedCrossRef
17.
Zurück zum Zitat Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24:213–216PubMedCrossRef Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24:213–216PubMedCrossRef
18.
Zurück zum Zitat Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439PubMedCrossRef Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439PubMedCrossRef
19.
Zurück zum Zitat Kobayashi N, Karisola P, Peña-Cruz V et al (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27:927–940PubMedCrossRef Kobayashi N, Karisola P, Peña-Cruz V et al (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27:927–940PubMedCrossRef
20.
Zurück zum Zitat Rodriguez-Manzanet R, Sanjuan MA, Wu HY et al (2010) T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci USA 107:8706–8711PubMedCrossRef Rodriguez-Manzanet R, Sanjuan MA, Wu HY et al (2010) T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci USA 107:8706–8711PubMedCrossRef
21.
Zurück zum Zitat Jinushi M, Sato M, Kanamoto A et al (2009) Milk fat globule epidermal growth factor-8 blockade triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. J Exp Med 206:1317–1326PubMedCrossRef Jinushi M, Sato M, Kanamoto A et al (2009) Milk fat globule epidermal growth factor-8 blockade triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. J Exp Med 206:1317–1326PubMedCrossRef
22.
Zurück zum Zitat Curran MA, Allison JP (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 69:7747–7755PubMedCrossRef Curran MA, Allison JP (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 69:7747–7755PubMedCrossRef
23.
Zurück zum Zitat Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280PubMedCrossRef Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280PubMedCrossRef
24.
Zurück zum Zitat Nakayama M, Akiba H, Takeda K et al (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113:3821–3830PubMedCrossRef Nakayama M, Akiba H, Takeda K et al (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113:3821–3830PubMedCrossRef
25.
Zurück zum Zitat Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861PubMedCrossRef Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861PubMedCrossRef
26.
Zurück zum Zitat Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570PubMedCrossRef Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570PubMedCrossRef
27.
Zurück zum Zitat Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MWL, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551PubMedCrossRef Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MWL, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551PubMedCrossRef
28.
Zurück zum Zitat Chiba S, Baghdadi M, Akiba H et al (2012) Tumor-infiltrating dendritic cells suppress nucleic acids-mediated innate immune response through TIM-3-HMGB1 interactions. Nat Immunol 13:832–842PubMedCrossRef Chiba S, Baghdadi M, Akiba H et al (2012) Tumor-infiltrating dendritic cells suppress nucleic acids-mediated innate immune response through TIM-3-HMGB1 interactions. Nat Immunol 13:832–842PubMedCrossRef
29.
Zurück zum Zitat Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51PubMedCrossRef Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51PubMedCrossRef
30.
Zurück zum Zitat Shiao SL, Ganesan AP, Rugo HS, Coussens LM (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25:2272–2559CrossRef Shiao SL, Ganesan AP, Rugo HS, Coussens LM (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25:2272–2559CrossRef
31.
Zurück zum Zitat Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295PubMedCrossRef Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295PubMedCrossRef
32.
Zurück zum Zitat Jinushi M (2012) The role of innate immune signals in antitumor immunity. Oncoimmunology 1:189–194PubMedCrossRef Jinushi M (2012) The role of innate immune signals in antitumor immunity. Oncoimmunology 1:189–194PubMedCrossRef
33.
Zurück zum Zitat Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9:353–363PubMedCrossRef Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9:353–363PubMedCrossRef
Metadaten
Titel
Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas
verfasst von
Muhammad Baghdadi
Hiroko Nagao
Hironori Yoshiyama
Hisaya Akiba
Hideo Yagita
Hirotoshi Dosaka-Akita
Masahisa Jinushi
Publikationsdatum
01.04.2013
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 4/2013
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-012-1371-9

Weitere Artikel der Ausgabe 4/2013

Cancer Immunology, Immunotherapy 4/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.