Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 10/2019

03.08.2019 | Focussed Research Review

Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy

verfasst von: Michael Friedrich, Simon Jasinski-Bergner, Maria-Filothei Lazaridou, Karthikeyan Subbarayan, Chiara Massa, Sandy Tretbar, Anja Mueller, Diana Handke, Katharina Biehl, Jürgen Bukur, Marco Donia, Ofer Mandelboim, Barbara Seliger

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 10/2019

Einloggen, um Zugang zu erhalten

Abstract

Immunotherapy aims to activate the immune system to fight cancer in a very specific and targeted manner. Despite the success of different immunotherapeutic strategies, in particular antibodies directed against checkpoints as well as adoptive T-cell therapy, the response of patients is limited in different types of cancers. This attributes to escape of the tumor from immune surveillance and development of acquired resistances during therapy. In this review, the different evasion and resistance mechanisms that limit the efficacy of immunotherapies targeting tumor-associated antigens presented by major histocompatibility complex molecules on the surface of the malignant cells are summarized. Overcoming these escape mechanisms is a great challenge, but might lead to a better clinical outcome of patients and is therefore currently a major focus of research.
Literatur
1.
Zurück zum Zitat Leone P et al (2013) MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 105(16):1172–1187PubMed Leone P et al (2013) MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 105(16):1172–1187PubMed
2.
Zurück zum Zitat Zanker D, Chen W (2014) Standard and immunoproteasomes show similar peptide degradation specificities. Eur J Immunol 44(12):3500–3503PubMed Zanker D, Chen W (2014) Standard and immunoproteasomes show similar peptide degradation specificities. Eur J Immunol 44(12):3500–3503PubMed
3.
Zurück zum Zitat Saveanu L et al (2005) Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 6(7):689–697PubMed Saveanu L et al (2005) Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 6(7):689–697PubMed
4.
Zurück zum Zitat Norbury CC, Eisenlohr LC (2016) Editorial overview: antigen processing. Curr Opin Immunol 40:5–6 Norbury CC, Eisenlohr LC (2016) Editorial overview: antigen processing. Curr Opin Immunol 40:5–6
5.
Zurück zum Zitat Mintern JD, Macri C, Villadangos JA (2015) Modulation of antigen presentation by intracellular trafficking. Curr Opin Immunol 34:16–21PubMed Mintern JD, Macri C, Villadangos JA (2015) Modulation of antigen presentation by intracellular trafficking. Curr Opin Immunol 34:16–21PubMed
6.
Zurück zum Zitat Han LY et al (2008) HLA class I antigen processing machinery component expression and intratumoral T-Cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin Cancer Res 14(11):3372–3379PubMedPubMedCentral Han LY et al (2008) HLA class I antigen processing machinery component expression and intratumoral T-Cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin Cancer Res 14(11):3372–3379PubMedPubMedCentral
7.
Zurück zum Zitat Perea F et al (2017) The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer 140(4):888–899PubMed Perea F et al (2017) The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer 140(4):888–899PubMed
8.
Zurück zum Zitat Garrido F et al (2017) The escape of cancer from T cell-mediated immune surveillance: HLA class I loss and tumor tissue architecture. Vaccines (Basel) 5(1):7 Garrido F et al (2017) The escape of cancer from T cell-mediated immune surveillance: HLA class I loss and tumor tissue architecture. Vaccines (Basel) 5(1):7
9.
Zurück zum Zitat Seliger B (2016) Role of microRNAs on HLA-G expression in human tumors. Hum Immunol 77(9):760–763PubMed Seliger B (2016) Role of microRNAs on HLA-G expression in human tumors. Hum Immunol 77(9):760–763PubMed
10.
Zurück zum Zitat Real LM et al (1999) Expression of HLA G in human tumors is not a frequent event. Int J Cancer 81(4):512–518PubMed Real LM et al (1999) Expression of HLA G in human tumors is not a frequent event. Int J Cancer 81(4):512–518PubMed
11.
Zurück zum Zitat Davies B et al (2001) HLA-G expression by tumors. Am J Reprod Immunol 45(2):103–107PubMed Davies B et al (2001) HLA-G expression by tumors. Am J Reprod Immunol 45(2):103–107PubMed
12.
Zurück zum Zitat Polakova K et al (2003) Analysis of HLA-G expression in malignant hematopoietic cells from leukemia patients. Leuk Res 27(7):643–648PubMed Polakova K et al (2003) Analysis of HLA-G expression in malignant hematopoietic cells from leukemia patients. Leuk Res 27(7):643–648PubMed
13.
Zurück zum Zitat Frumento G et al (2000) Melanomas and melanoma cell lines do not express HLA-G, and the expression cannot be induced by gamma IFN treatment. Tissue Antigens 56(1):30–37PubMed Frumento G et al (2000) Melanomas and melanoma cell lines do not express HLA-G, and the expression cannot be induced by gamma IFN treatment. Tissue Antigens 56(1):30–37PubMed
14.
Zurück zum Zitat Pangault C et al (1999) HLA-G protein expression is not induced during malignant transformation. Tissue Antigens 53(4 Pt 1):335–346PubMed Pangault C et al (1999) HLA-G protein expression is not induced during malignant transformation. Tissue Antigens 53(4 Pt 1):335–346PubMed
15.
Zurück zum Zitat Chang CC, Ferrone S (2003) HLA-G in melanoma: can the current controversies be solved? Semin Cancer Biol 13(5):361–369PubMed Chang CC, Ferrone S (2003) HLA-G in melanoma: can the current controversies be solved? Semin Cancer Biol 13(5):361–369PubMed
16.
Zurück zum Zitat Wang Y et al (2011) Expression of HLA-G in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 10(2):158–163PubMed Wang Y et al (2011) Expression of HLA-G in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 10(2):158–163PubMed
17.
Zurück zum Zitat Yie SM et al (2007) Expression of human leucocyte antigen G (HLA-G) is associated with prognosis in non-small cell lung cancer. Lung Cancer 58(2):267–274PubMed Yie SM et al (2007) Expression of human leucocyte antigen G (HLA-G) is associated with prognosis in non-small cell lung cancer. Lung Cancer 58(2):267–274PubMed
18.
Zurück zum Zitat Tronik-Le Roux D et al (2017) Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 11(11):1561–1578PubMedPubMedCentral Tronik-Le Roux D et al (2017) Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 11(11):1561–1578PubMedPubMedCentral
19.
20.
Zurück zum Zitat Lin A, Yan WH (2015) Human leukocyte antigen-G (HLA-G) expression in cancers: roles in immune evasion, metastasis and target for therapy. Mol Med 21(1):782–791PubMedPubMedCentral Lin A, Yan WH (2015) Human leukocyte antigen-G (HLA-G) expression in cancers: roles in immune evasion, metastasis and target for therapy. Mol Med 21(1):782–791PubMedPubMedCentral
21.
Zurück zum Zitat Contini P et al (2003) Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8 + cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol 33(1):125–134PubMed Contini P et al (2003) Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8 + cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol 33(1):125–134PubMed
22.
Zurück zum Zitat Menier C et al (2002) MICA triggering signal for NK cell tumor lysis is counteracted by HLA-G1-mediated inhibitory signal. Int J Cancer 100(1):63–70PubMed Menier C et al (2002) MICA triggering signal for NK cell tumor lysis is counteracted by HLA-G1-mediated inhibitory signal. Int J Cancer 100(1):63–70PubMed
23.
Zurück zum Zitat Fons P et al (2006) Soluble HLA-G1 inhibits angiogenesis through an apoptotic pathway and by direct binding to CD160 receptor expressed by endothelial cells. Blood 108(8):2608–2615PubMed Fons P et al (2006) Soluble HLA-G1 inhibits angiogenesis through an apoptotic pathway and by direct binding to CD160 receptor expressed by endothelial cells. Blood 108(8):2608–2615PubMed
24.
Zurück zum Zitat Morandi F et al (2010) A novel mechanism of soluble HLA-G mediated immune modulation: downregulation of T cell chemokine receptor expression and impairment of chemotaxis. PLoS One 5(7):e11763PubMedPubMedCentral Morandi F et al (2010) A novel mechanism of soluble HLA-G mediated immune modulation: downregulation of T cell chemokine receptor expression and impairment of chemotaxis. PLoS One 5(7):e11763PubMedPubMedCentral
25.
Zurück zum Zitat Morandi F et al (2011) Soluble HLA-G dampens CD94/NKG2A expression and function and differentially modulates chemotaxis and cytokine and chemokine secretion in CD56bright and CD56dim NK cells. Blood 118(22):5840–5850PubMed Morandi F et al (2011) Soluble HLA-G dampens CD94/NKG2A expression and function and differentially modulates chemotaxis and cytokine and chemokine secretion in CD56bright and CD56dim NK cells. Blood 118(22):5840–5850PubMed
26.
Zurück zum Zitat Agaugue S, Carosella ED, Rouas-Freiss N (2011) Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood 117(26):7021–7031PubMed Agaugue S, Carosella ED, Rouas-Freiss N (2011) Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood 117(26):7021–7031PubMed
27.
Zurück zum Zitat Loumagne L et al (2014) In vivo evidence that secretion of HLA-G by immunogenic tumor cells allows their evasion from immunosurveillance. Int J Cancer 135(9):2107–2117PubMed Loumagne L et al (2014) In vivo evidence that secretion of HLA-G by immunogenic tumor cells allows their evasion from immunosurveillance. Int J Cancer 135(9):2107–2117PubMed
28.
Zurück zum Zitat Seliger B (2014) The link between MHC class I abnormalities of tumors, oncogenes, tumor suppressor genes, and transcription factors. J Immunotoxicol 11(4):308–310PubMed Seliger B (2014) The link between MHC class I abnormalities of tumors, oncogenes, tumor suppressor genes, and transcription factors. J Immunotoxicol 11(4):308–310PubMed
29.
Zurück zum Zitat Cai L et al (2018) Defective HLA class I antigen processing machinery in cancer. Cancer Immunol Immunother 67(6):999–1009PubMedPubMedCentral Cai L et al (2018) Defective HLA class I antigen processing machinery in cancer. Cancer Immunol Immunother 67(6):999–1009PubMedPubMedCentral
30.
Zurück zum Zitat Donia M et al (2017) Acquired Immune resistance follows complete tumor regression without loss of target antigens or IFN gamma signaling. Cancer Res 77(17):4562–4566PubMed Donia M et al (2017) Acquired Immune resistance follows complete tumor regression without loss of target antigens or IFN gamma signaling. Cancer Res 77(17):4562–4566PubMed
31.
Zurück zum Zitat Kloor M, Michel S, von Knebel Doeberitz M (2010) Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer 127(5):1001–1010PubMed Kloor M, Michel S, von Knebel Doeberitz M (2010) Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer 127(5):1001–1010PubMed
32.
Zurück zum Zitat Hicklin DJ et al (1998) Beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 101(12):2720–2729PubMedPubMedCentral Hicklin DJ et al (1998) Beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 101(12):2720–2729PubMedPubMedCentral
33.
Zurück zum Zitat Chang CC et al (2005) Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 174(3):1462–1471PubMed Chang CC et al (2005) Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 174(3):1462–1471PubMed
34.
Zurück zum Zitat Geertsen R et al (2002) Loss of single HLA class I allospecificities in melanoma cells due to selective genomic abbreviations. Int J Cancer 99(1):82–87PubMed Geertsen R et al (2002) Loss of single HLA class I allospecificities in melanoma cells due to selective genomic abbreviations. Int J Cancer 99(1):82–87PubMed
35.
Zurück zum Zitat del Campo AB et al (2014) Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 134(1):102–113PubMed del Campo AB et al (2014) Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 134(1):102–113PubMed
36.
Zurück zum Zitat McGranahan N et al (2017) Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171(6):1259–1271PubMedPubMedCentral McGranahan N et al (2017) Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171(6):1259–1271PubMedPubMedCentral
37.
Zurück zum Zitat Zehir A et al (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23(6):703–713PubMedPubMedCentral Zehir A et al (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23(6):703–713PubMedPubMedCentral
38.
Zurück zum Zitat Seliger B (2017) Immune modulatory microRNAs as a novel mechanism to revert immune escape of tumors. Cytokine Growth Factor Rev 36:49–56PubMed Seliger B (2017) Immune modulatory microRNAs as a novel mechanism to revert immune escape of tumors. Cytokine Growth Factor Rev 36:49–56PubMed
39.
Zurück zum Zitat Ritter C et al (2017) Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci Rep 7(1):2290PubMedPubMedCentral Ritter C et al (2017) Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci Rep 7(1):2290PubMedPubMedCentral
41.
Zurück zum Zitat Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99(15):9864–9869PubMedPubMedCentral Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99(15):9864–9869PubMedPubMedCentral
42.
Zurück zum Zitat Vlkova V et al (2014) Epigenetic regulations in the IFNgamma signalling pathway: IFNgamma-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes. Oncotarget 5(16):6923–6935PubMedPubMedCentral Vlkova V et al (2014) Epigenetic regulations in the IFNgamma signalling pathway: IFNgamma-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes. Oncotarget 5(16):6923–6935PubMedPubMedCentral
43.
Zurück zum Zitat Manning J et al (2008) Induction of MHC class I molecule cell surface expression and epigenetic activation of antigen-processing machinery components in a murine model for human papilloma virus 16-associated tumours. Immunology 123(2):218–227PubMedPubMedCentral Manning J et al (2008) Induction of MHC class I molecule cell surface expression and epigenetic activation of antigen-processing machinery components in a murine model for human papilloma virus 16-associated tumours. Immunology 123(2):218–227PubMedPubMedCentral
44.
Zurück zum Zitat Setiadi AF et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68(23):9601–9607PubMed Setiadi AF et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68(23):9601–9607PubMed
45.
Zurück zum Zitat Dunker K et al (2008) Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens 72(2):137–148PubMed Dunker K et al (2008) Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens 72(2):137–148PubMed
46.
Zurück zum Zitat Ramsuran V et al (2015) Epigenetic regulation of differential HLA-A allelic expression levels. Hum Mol Genet 24(15):4268–4275PubMedPubMedCentral Ramsuran V et al (2015) Epigenetic regulation of differential HLA-A allelic expression levels. Hum Mol Genet 24(15):4268–4275PubMedPubMedCentral
47.
48.
Zurück zum Zitat Khan AN, Gregorie CJ, Tomasi TB (2008) Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother 57(5):647–654PubMed Khan AN, Gregorie CJ, Tomasi TB (2008) Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother 57(5):647–654PubMed
49.
Zurück zum Zitat Komatsu Y, Hayashi H (1998) Histone deacetylase inhibitors up-regulate the expression of cell surface MHC class-I molecules in B16/BL6 cells. J Antibiot (Tokyo) 51(1):89–91 Komatsu Y, Hayashi H (1998) Histone deacetylase inhibitors up-regulate the expression of cell surface MHC class-I molecules in B16/BL6 cells. J Antibiot (Tokyo) 51(1):89–91
50.
Zurück zum Zitat Robbins GR et al (2012) Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat-containing (NLR) proteins. J Biol Chem 287(29):24294–24303PubMedPubMedCentral Robbins GR et al (2012) Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat-containing (NLR) proteins. J Biol Chem 287(29):24294–24303PubMedPubMedCentral
51.
Zurück zum Zitat Moreau P et al (2003) HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA 100(3):1191–1196PubMedPubMedCentral Moreau P et al (2003) HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA 100(3):1191–1196PubMedPubMedCentral
52.
Zurück zum Zitat Holling TM et al (2009) Genetic and epigenetic control of the major histocompatibility complex class Ib gene HLA-G in trophoblast cell lines. Ann N Y Acad Sci 1173:538–544PubMed Holling TM et al (2009) Genetic and epigenetic control of the major histocompatibility complex class Ib gene HLA-G in trophoblast cell lines. Ann N Y Acad Sci 1173:538–544PubMed
53.
Zurück zum Zitat van den Elsen PJ (2011) Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2:48PubMedPubMedCentral van den Elsen PJ (2011) Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2:48PubMedPubMedCentral
54.
Zurück zum Zitat van den Elsen PJ et al (1998) Regulation of MHC class I and II gene transcription: differences and similarities. Immunogenetics 48(3):208–221PubMed van den Elsen PJ et al (1998) Regulation of MHC class I and II gene transcription: differences and similarities. Immunogenetics 48(3):208–221PubMed
55.
Zurück zum Zitat Howcroft TK et al (2003) Distinct transcriptional pathways regulate basal and activated major histocompatibility complex class I expression. Mol Cell Biol 23(10):3377–3391PubMedPubMedCentral Howcroft TK et al (2003) Distinct transcriptional pathways regulate basal and activated major histocompatibility complex class I expression. Mol Cell Biol 23(10):3377–3391PubMedPubMedCentral
56.
Zurück zum Zitat Gobin SJ et al (1998) The role of enhancer A in the locus-specific transactivation of classical and nonclassical HLA class I genes by nuclear factor kappa B. J Immunol 161(5):2276–2283PubMed Gobin SJ et al (1998) The role of enhancer A in the locus-specific transactivation of classical and nonclassical HLA class I genes by nuclear factor kappa B. J Immunol 161(5):2276–2283PubMed
57.
Zurück zum Zitat Gobin SJ et al (1999) Transactivation of classical and nonclassical HLA class I genes through the IFN-stimulated response element. J Immunol 163(3):1428–1434PubMed Gobin SJ et al (1999) Transactivation of classical and nonclassical HLA class I genes through the IFN-stimulated response element. J Immunol 163(3):1428–1434PubMed
58.
Zurück zum Zitat Gobin SJ et al (2001) The MHC-specific enhanceosome and its role in MHC class I and beta(2)-microglobulin gene transactivation. J Immunol 167(9):5175–5184PubMed Gobin SJ et al (2001) The MHC-specific enhanceosome and its role in MHC class I and beta(2)-microglobulin gene transactivation. J Immunol 167(9):5175–5184PubMed
59.
Zurück zum Zitat van den Elsen PJ et al (2004) Transcriptional regulation of antigen presentation. Curr Opin Immunol 16(1):67–75PubMed van den Elsen PJ et al (2004) Transcriptional regulation of antigen presentation. Curr Opin Immunol 16(1):67–75PubMed
60.
Zurück zum Zitat Gobin SJ et al (1997) Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 6(5):601–611PubMed Gobin SJ et al (1997) Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 6(5):601–611PubMed
61.
Zurück zum Zitat Bukur J et al (2010) Identification of E2F1 as an important transcription factor for the regulation of tapasin expression. J Biol Chem 285(40):30419–30426PubMedPubMedCentral Bukur J et al (2010) Identification of E2F1 as an important transcription factor for the regulation of tapasin expression. J Biol Chem 285(40):30419–30426PubMedPubMedCentral
62.
Zurück zum Zitat Zheng P et al (1998) Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature 396(6709):373–376PubMed Zheng P et al (1998) Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature 396(6709):373–376PubMed
63.
Zurück zum Zitat Geiser AG et al (1993) Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci USA 90(21):9944–9948PubMedPubMedCentral Geiser AG et al (1993) Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci USA 90(21):9944–9948PubMedPubMedCentral
64.
Zurück zum Zitat Baldeon ME et al (1997) Interferon-gamma independently activates the MHC class I antigen processing pathway and diminishes glucose responsiveness in pancreatic beta-cell lines. Diabetes 46(5):770–778PubMed Baldeon ME et al (1997) Interferon-gamma independently activates the MHC class I antigen processing pathway and diminishes glucose responsiveness in pancreatic beta-cell lines. Diabetes 46(5):770–778PubMed
65.
Zurück zum Zitat Israel A et al (1989) TNF stimulates expression of mouse MHC class I genes by inducing an NF kappa B-like enhancer binding activity which displaces constitutive factors. EMBO J 8(12):3793–3800PubMedPubMedCentral Israel A et al (1989) TNF stimulates expression of mouse MHC class I genes by inducing an NF kappa B-like enhancer binding activity which displaces constitutive factors. EMBO J 8(12):3793–3800PubMedPubMedCentral
66.
Zurück zum Zitat Komov L et al (2018) Cell surface MHC class I expression is limited by the availability of peptide-receptive “empty” molecules rather than by the supply of peptide ligands. Proteomics 18(12):e1700248PubMed Komov L et al (2018) Cell surface MHC class I expression is limited by the availability of peptide-receptive “empty” molecules rather than by the supply of peptide ligands. Proteomics 18(12):e1700248PubMed
67.
Zurück zum Zitat Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16(3):131–144PubMed Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16(3):131–144PubMed
68.
Zurück zum Zitat Schroder K et al (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189PubMed Schroder K et al (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189PubMed
69.
Zurück zum Zitat Ting JP, Baldwin AS (1993) Regulation of MHC gene expression. Curr Opin Immunol 5(1):8–16PubMed Ting JP, Baldwin AS (1993) Regulation of MHC gene expression. Curr Opin Immunol 5(1):8–16PubMed
70.
Zurück zum Zitat Hertzog PJ, Williams BR (2013) Fine tuning type I interferon responses. Cytokine Growth Factor Rev 24(3):217–225PubMed Hertzog PJ, Williams BR (2013) Fine tuning type I interferon responses. Cytokine Growth Factor Rev 24(3):217–225PubMed
71.
Zurück zum Zitat Zhou F (2009) Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 28(3–4):239–260PubMed Zhou F (2009) Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 28(3–4):239–260PubMed
72.
Zurück zum Zitat Strehl B et al (2005) Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 207:19–30PubMed Strehl B et al (2005) Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 207:19–30PubMed
73.
Zurück zum Zitat Meissner TB et al (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA 107(31):13794–13799PubMedPubMedCentral Meissner TB et al (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA 107(31):13794–13799PubMedPubMedCentral
74.
Zurück zum Zitat Kulski JK et al (2001) Genomic and phylogenetic analysis of the human CD1 and HLA class I multicopy genes. J Mol Evol 53(6):642–650PubMed Kulski JK et al (2001) Genomic and phylogenetic analysis of the human CD1 and HLA class I multicopy genes. J Mol Evol 53(6):642–650PubMed
75.
Zurück zum Zitat Gobin SJ, van den Elsen PJ (1999) The regulation of HLA class I expression: is HLA-G the odd one out? Semin Cancer Biol 9(1):55–59PubMed Gobin SJ, van den Elsen PJ (1999) The regulation of HLA class I expression: is HLA-G the odd one out? Semin Cancer Biol 9(1):55–59PubMed
76.
Zurück zum Zitat Gobin SJ et al (2002) HLA-G transactivation by cAMP-response element-binding protein (CREB) An alternative transactivation pathway to the conserved major histocompatibility complex (MHC) class I regulatory routes. J Biol Chem 277(42):39525–39531PubMed Gobin SJ et al (2002) HLA-G transactivation by cAMP-response element-binding protein (CREB) An alternative transactivation pathway to the conserved major histocompatibility complex (MHC) class I regulatory routes. J Biol Chem 277(42):39525–39531PubMed
77.
Zurück zum Zitat Flajollet S et al (2009) RREB-1 is a transcriptional repressor of HLA-G. J Immunol 183(11):6948–6959PubMed Flajollet S et al (2009) RREB-1 is a transcriptional repressor of HLA-G. J Immunol 183(11):6948–6959PubMed
78.
Zurück zum Zitat Eichmuller SB et al (2017) Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J Natl Cancer Inst 109(10):1–14 Eichmuller SB et al (2017) Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J Natl Cancer Inst 109(10):1–14
79.
Zurück zum Zitat Seliger B (2008) Different regulation of MHC class I antigen processing components in human tumors. J Immunotoxicol 5(4):361–367PubMed Seliger B (2008) Different regulation of MHC class I antigen processing components in human tumors. J Immunotoxicol 5(4):361–367PubMed
80.
Zurück zum Zitat Kulkarni S et al (2011) Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472(7344):495–498PubMedPubMedCentral Kulkarni S et al (2011) Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472(7344):495–498PubMedPubMedCentral
81.
Zurück zum Zitat Tan Z et al (2007) Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81(4):829–834PubMedPubMedCentral Tan Z et al (2007) Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81(4):829–834PubMedPubMedCentral
82.
Zurück zum Zitat Zhu XM et al (2010) Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. Am J Obstet Gynecol 202(6):592PubMed Zhu XM et al (2010) Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. Am J Obstet Gynecol 202(6):592PubMed
83.
Zurück zum Zitat Jasinski-Bergner S et al (2016) Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma. Oncotarget 7(18):26866–26878PubMedPubMedCentral Jasinski-Bergner S et al (2016) Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma. Oncotarget 7(18):26866–26878PubMedPubMedCentral
84.
Zurück zum Zitat Friedrich M et al (2017) The role of the miR-148/-152 family in physiology and disease. Eur J Immunol 47(12):2026–2038PubMed Friedrich M et al (2017) The role of the miR-148/-152 family in physiology and disease. Eur J Immunol 47(12):2026–2038PubMed
85.
86.
Zurück zum Zitat Jasinski-Bergner S et al (2015) Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology 4(6):e1008805PubMedPubMedCentral Jasinski-Bergner S et al (2015) Clinical relevance of miR-mediated HLA-G regulation and the associated immune cell infiltration in renal cell carcinoma. Oncoimmunology 4(6):e1008805PubMedPubMedCentral
87.
Zurück zum Zitat Wang Y et al (2017) MicroRNA-152 regulates immune response via targeting B7-H1 in gastric carcinoma. Oncotarget 8(17):28125–28134PubMedPubMedCentral Wang Y et al (2017) MicroRNA-152 regulates immune response via targeting B7-H1 in gastric carcinoma. Oncotarget 8(17):28125–28134PubMedPubMedCentral
88.
Zurück zum Zitat Gao F et al (2013) miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 431(3):610–616PubMed Gao F et al (2013) miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 431(3):610–616PubMed
89.
Zurück zum Zitat Bartoszewski R et al (2011) The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J Biol Chem 286(48):41862–41870PubMedPubMedCentral Bartoszewski R et al (2011) The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J Biol Chem 286(48):41862–41870PubMedPubMedCentral
90.
Zurück zum Zitat Albanese M et al (2016) Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8 + T cells. Proc Natl Acad Sci USA 113(42):E6467–E6475PubMedPubMedCentral Albanese M et al (2016) Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8 + T cells. Proc Natl Acad Sci USA 113(42):E6467–E6475PubMedPubMedCentral
91.
Zurück zum Zitat Kim S et al (2011) Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 12(10):984–991PubMedPubMedCentral Kim S et al (2011) Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 12(10):984–991PubMedPubMedCentral
92.
Zurück zum Zitat Huang L et al (2018) The RNA-binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA-A expression. Clin Cancer Res 24(14):3366–3376PubMed Huang L et al (2018) The RNA-binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA-A expression. Clin Cancer Res 24(14):3366–3376PubMed
93.
Zurück zum Zitat Cano F et al (2012) The RNA-binding E3 ubiquitin ligase MEX-3C links ubiquitination with MHC-I mRNA degradation. EMBO J 31(17):3596–3606PubMedPubMedCentral Cano F et al (2012) The RNA-binding E3 ubiquitin ligase MEX-3C links ubiquitination with MHC-I mRNA degradation. EMBO J 31(17):3596–3606PubMedPubMedCentral
94.
Zurück zum Zitat Reches A et al (2016) HNRNPR regulates the expression of classical and nonclassical MHC class I proteins. J Immunol 196(12):4967–4976PubMed Reches A et al (2016) HNRNPR regulates the expression of classical and nonclassical MHC class I proteins. J Immunol 196(12):4967–4976PubMed
95.
Zurück zum Zitat Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111PubMed Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111PubMed
96.
Zurück zum Zitat Kaplan DH et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95(13):7556–7561PubMedPubMedCentral Kaplan DH et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95(13):7556–7561PubMedPubMedCentral
97.
98.
Zurück zum Zitat Greenlund AC et al (1994) Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J 13(7):1591–1600PubMedPubMedCentral Greenlund AC et al (1994) Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J 13(7):1591–1600PubMedPubMedCentral
99.
Zurück zum Zitat Decker T et al (1991) Cytoplasmic activation of GAF, an IFN-gamma-regulated DNA-binding factor. EMBO J 10(4):927–932PubMedPubMedCentral Decker T et al (1991) Cytoplasmic activation of GAF, an IFN-gamma-regulated DNA-binding factor. EMBO J 10(4):927–932PubMedPubMedCentral
100.
Zurück zum Zitat Chatterjee-Kishore M et al (2000) How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J 19(15):4111–4122PubMedPubMedCentral Chatterjee-Kishore M et al (2000) How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J 19(15):4111–4122PubMedPubMedCentral
102.
Zurück zum Zitat Starr R et al (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387(6636):917–921PubMed Starr R et al (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387(6636):917–921PubMed
103.
Zurück zum Zitat Castro F et al (2018) Interferon-Gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol 9:847PubMedPubMedCentral Castro F et al (2018) Interferon-Gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol 9:847PubMedPubMedCentral
104.
Zurück zum Zitat Seliger B et al (1997) IFN-gamma-mediated coordinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin Cancer Res 3(4):573–578PubMed Seliger B et al (1997) IFN-gamma-mediated coordinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin Cancer Res 3(4):573–578PubMed
105.
Zurück zum Zitat Seliger B, Ruiz-Cabello F, Garrido F (2008) IFN inducibility of major histocompatibility antigens in tumors. Adv Cancer Res 101:249–276PubMedPubMedCentral Seliger B, Ruiz-Cabello F, Garrido F (2008) IFN inducibility of major histocompatibility antigens in tumors. Adv Cancer Res 101:249–276PubMedPubMedCentral
106.
Zurück zum Zitat Respa A et al (2011) Association of IFN-gamma signal transduction defects with impaired HLA class I antigen processing in melanoma cell lines. Clin Cancer Res 17(9):2668–2678PubMedPubMedCentral Respa A et al (2011) Association of IFN-gamma signal transduction defects with impaired HLA class I antigen processing in melanoma cell lines. Clin Cancer Res 17(9):2668–2678PubMedPubMedCentral
108.
Zurück zum Zitat Schaefer L et al (2017) Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J 284(1):10–26PubMed Schaefer L et al (2017) Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J 284(1):10–26PubMed
109.
Zurück zum Zitat Recktenwald CV et al (2008) Altered detoxification status and increased resistance to oxidative stress by K-ras transformation. Cancer Res 68(24):10086–10093PubMed Recktenwald CV et al (2008) Altered detoxification status and increased resistance to oxidative stress by K-ras transformation. Cancer Res 68(24):10086–10093PubMed
110.
Zurück zum Zitat Recktenwald CV et al (2012) HER-2/neu-mediated down-regulation of biglycan associated with altered growth properties. J Biol Chem 287(29):24320–24329PubMedPubMedCentral Recktenwald CV et al (2012) HER-2/neu-mediated down-regulation of biglycan associated with altered growth properties. J Biol Chem 287(29):24320–24329PubMedPubMedCentral
111.
Zurück zum Zitat Subbarayan K et al (2018) Biglycan-mediated upregulation of MHC class I expression in HER-2/neu-transformed cells. Oncoimmunology 7(4):e1373233PubMedPubMedCentral Subbarayan K et al (2018) Biglycan-mediated upregulation of MHC class I expression in HER-2/neu-transformed cells. Oncoimmunology 7(4):e1373233PubMedPubMedCentral
112.
Zurück zum Zitat Subbarayan K, Seliger B (2018) Tumor-dependent effects of proteoglycans and various glycosaminoglycan synthesizing enzymes and sulfotransferases on patients’ outcome. Curr Cancer Drug Targets 19(3):210–221 Subbarayan K, Seliger B (2018) Tumor-dependent effects of proteoglycans and various glycosaminoglycan synthesizing enzymes and sulfotransferases on patients’ outcome. Curr Cancer Drug Targets 19(3):210–221
113.
Zurück zum Zitat Yan L, DeMars LC (2012) Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice. Int J Cancer 131(6):1260–1266PubMed Yan L, DeMars LC (2012) Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice. Int J Cancer 131(6):1260–1266PubMed
114.
Zurück zum Zitat Chen YC et al (2013) Dietary selenium supplementation modifies breast tumor growth and metastasis. Int J Cancer 133(9):2054–2064PubMed Chen YC et al (2013) Dietary selenium supplementation modifies breast tumor growth and metastasis. Int J Cancer 133(9):2054–2064PubMed
115.
Zurück zum Zitat Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777PubMedPubMedCentral Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777PubMedPubMedCentral
116.
Zurück zum Zitat Lennicke C et al (2017) Modulation of MHC class I surface expression in B16F10 melanoma cells by methylseleninic acid. Oncoimmunology 6(6):e1259049PubMed Lennicke C et al (2017) Modulation of MHC class I surface expression in B16F10 melanoma cells by methylseleninic acid. Oncoimmunology 6(6):e1259049PubMed
117.
Zurück zum Zitat Kukita K et al (2015) Cancer-associated oxidase ERO1-alpha regulates the expression of MHC class I molecule via oxidative folding. J Immunol 194(10):4988–4996PubMed Kukita K et al (2015) Cancer-associated oxidase ERO1-alpha regulates the expression of MHC class I molecule via oxidative folding. J Immunol 194(10):4988–4996PubMed
118.
Zurück zum Zitat Paz-Ares L et al (2018) Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 379(21):2040–2051PubMed Paz-Ares L et al (2018) Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 379(21):2040–2051PubMed
119.
Zurück zum Zitat Koshkin VS, Grivas P (2018) Emerging role of immunotherapy in advanced urothelial carcinoma. Curr Oncol Rep 20(6):48PubMed Koshkin VS, Grivas P (2018) Emerging role of immunotherapy in advanced urothelial carcinoma. Curr Oncol Rep 20(6):48PubMed
120.
Zurück zum Zitat Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375(18):1767–1778PubMedPubMedCentral Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375(18):1767–1778PubMedPubMedCentral
121.
Zurück zum Zitat Wolchok JD et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356PubMedPubMedCentral Wolchok JD et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356PubMedPubMedCentral
122.
123.
Zurück zum Zitat Barkal AA et al (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19(1):76–84PubMed Barkal AA et al (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19(1):76–84PubMed
124.
Zurück zum Zitat Haworth KB et al (2015) Going back to class I: MHC and immunotherapies for childhood cancer. Pediatr Blood Cancer 62(4):571–576PubMed Haworth KB et al (2015) Going back to class I: MHC and immunotherapies for childhood cancer. Pediatr Blood Cancer 62(4):571–576PubMed
125.
Zurück zum Zitat Chowell D et al (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359(6375):582–587PubMed Chowell D et al (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359(6375):582–587PubMed
126.
Zurück zum Zitat Goodman AM et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608PubMedPubMedCentral Goodman AM et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608PubMedPubMedCentral
127.
Zurück zum Zitat Le DT et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413PubMedPubMedCentral Le DT et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413PubMedPubMedCentral
128.
Zurück zum Zitat Yeon Yeon S et al (2019) Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma. Pathol Res Pract 215(1):209–214PubMed Yeon Yeon S et al (2019) Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma. Pathol Res Pract 215(1):209–214PubMed
129.
Zurück zum Zitat Sade-Feldman M et al (2017) Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8(1):1136PubMedPubMedCentral Sade-Feldman M et al (2017) Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8(1):1136PubMedPubMedCentral
130.
Zurück zum Zitat Anagnostou V et al (2017) Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov 7(3):264–276PubMed Anagnostou V et al (2017) Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov 7(3):264–276PubMed
131.
Zurück zum Zitat Ayers M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940PubMedPubMedCentral Ayers M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940PubMedPubMedCentral
132.
Zurück zum Zitat Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829PubMedPubMedCentral Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829PubMedPubMedCentral
133.
Zurück zum Zitat Budczies J et al (2017) Mutation patterns in genes encoding interferon signaling and antigen presentation: a pan-cancer survey with implications for the use of immune checkpoint inhibitors. Genes Chromosomes Cancer 56(8):651–659PubMed Budczies J et al (2017) Mutation patterns in genes encoding interferon signaling and antigen presentation: a pan-cancer survey with implications for the use of immune checkpoint inhibitors. Genes Chromosomes Cancer 56(8):651–659PubMed
134.
Zurück zum Zitat Ye Z et al (2018) Prevalent homozygous deletions of type I interferon and defensin genes in human cancers associate with immunotherapy resistance. Clin Cancer Res 24(14):3299–3308PubMedPubMedCentral Ye Z et al (2018) Prevalent homozygous deletions of type I interferon and defensin genes in human cancers associate with immunotherapy resistance. Clin Cancer Res 24(14):3299–3308PubMedPubMedCentral
135.
Zurück zum Zitat Paulson KG et al (2018) Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat Commun 9(1):3868PubMedPubMedCentral Paulson KG et al (2018) Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat Commun 9(1):3868PubMedPubMedCentral
137.
Zurück zum Zitat Koyama S et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501PubMedPubMedCentral Koyama S et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501PubMedPubMedCentral
138.
Zurück zum Zitat Chojnacki S et al (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45(W1):W550–W553PubMedPubMedCentral Chojnacki S et al (2017) Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 45(W1):W550–W553PubMedPubMedCentral
139.
Zurück zum Zitat Belmont PJ et al (2012) Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J Mol Cell Cardiol 52(5):1176–1182PubMedPubMedCentral Belmont PJ et al (2012) Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J Mol Cell Cardiol 52(5):1176–1182PubMedPubMedCentral
140.
Zurück zum Zitat Colangelo T et al (2016) Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis 7:e2120PubMedPubMedCentral Colangelo T et al (2016) Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis 7:e2120PubMedPubMedCentral
141.
Zurück zum Zitat Hisaoka M, Matsuyama A, Nakamoto M (2012) Aberrant calreticulin expression is involved in the dedifferentiation of dedifferentiated liposarcoma. Am J Pathol 180(5):2076–2083PubMed Hisaoka M, Matsuyama A, Nakamoto M (2012) Aberrant calreticulin expression is involved in the dedifferentiation of dedifferentiated liposarcoma. Am J Pathol 180(5):2076–2083PubMed
142.
Zurück zum Zitat Zhao S et al (2015) MicroRNA-148a inhibits the proliferation and promotes the paclitaxel-induced apoptosis of ovarian cancer cells by targeting PDIA3. Mol Med Rep 12(3):3923–3929PubMed Zhao S et al (2015) MicroRNA-148a inhibits the proliferation and promotes the paclitaxel-induced apoptosis of ovarian cancer cells by targeting PDIA3. Mol Med Rep 12(3):3923–3929PubMed
143.
Zurück zum Zitat Mari L et al (2018) microRNA 125a regulates MHC-I expression on esophageal adenocarcinoma cells, associated with suppression of antitumor immune response and poor outcomes of patients. Gastroenterology 155(3):784–798PubMed Mari L et al (2018) microRNA 125a regulates MHC-I expression on esophageal adenocarcinoma cells, associated with suppression of antitumor immune response and poor outcomes of patients. Gastroenterology 155(3):784–798PubMed
144.
Zurück zum Zitat Liu Y et al (2009) Altered expression profiles of microRNAs in a stable hepatitis B virus-expressing cell line. Chin Med J (Engl) 122(1):10–14 Liu Y et al (2009) Altered expression profiles of microRNAs in a stable hepatitis B virus-expressing cell line. Chin Med J (Engl) 122(1):10–14
145.
Zurück zum Zitat Kulkarni S et al (2017) Posttranscriptional regulation of HLA-A protein expression by alternative polyadenylation signals involving the RNA-binding protein syncrip. J Immunol 199(11):3892–3899PubMed Kulkarni S et al (2017) Posttranscriptional regulation of HLA-A protein expression by alternative polyadenylation signals involving the RNA-binding protein syncrip. J Immunol 199(11):3892–3899PubMed
146.
Zurück zum Zitat Nachmani D et al (2014) MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 10(2):e1003963PubMedPubMedCentral Nachmani D et al (2014) MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 10(2):e1003963PubMedPubMedCentral
147.
Zurück zum Zitat Kulkarni S et al (2013) Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc Natl Acad Sci USA 110(51):20705–20710PubMedPubMedCentral Kulkarni S et al (2013) Genetic interplay between HLA-C and MIR148A in HIV control and Crohn disease. Proc Natl Acad Sci USA 110(51):20705–20710PubMedPubMedCentral
148.
Zurück zum Zitat Yin P et al (2015) MiR-451 suppresses cell proliferation and metastasis in A549 lung cancer cells. Mol Biotechnol 57(1):1–11PubMed Yin P et al (2015) MiR-451 suppresses cell proliferation and metastasis in A549 lung cancer cells. Mol Biotechnol 57(1):1–11PubMed
149.
Zurück zum Zitat Knox B et al (2018) A functional SNP in the 3′-UTR of TAP2 gene interacts with microRNA hsa-miR-1270 to suppress the gene expression. Environ Mol Mutagen 59(2):134–143PubMed Knox B et al (2018) A functional SNP in the 3′-UTR of TAP2 gene interacts with microRNA hsa-miR-1270 to suppress the gene expression. Environ Mol Mutagen 59(2):134–143PubMed
Metadaten
Titel
Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy
verfasst von
Michael Friedrich
Simon Jasinski-Bergner
Maria-Filothei Lazaridou
Karthikeyan Subbarayan
Chiara Massa
Sandy Tretbar
Anja Mueller
Diana Handke
Katharina Biehl
Jürgen Bukur
Marco Donia
Ofer Mandelboim
Barbara Seliger
Publikationsdatum
03.08.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 10/2019
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-019-02373-1

Weitere Artikel der Ausgabe 10/2019

Cancer Immunology, Immunotherapy 10/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.