Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 5/2020

08.02.2020 | Original Article

Nonlinear response to cancer nanotherapy due to macrophage interactions revealed by mathematical modeling and evaluated in a murine model via CRISPR-modulated macrophage polarization

verfasst von: Fransisca Leonard, Louis T. Curtis, Ahmed R. Hamed, Carolyn Zhang, Eric Chau, Devon Sieving, Biana Godin, Hermann B. Frieboes

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Tumor-associated macrophages (TAMs) have been shown to both aid and hinder tumor growth, with patient outcomes potentially hinging on the proportion of M1, pro-inflammatory/growth-inhibiting, to M2, growth-supporting, phenotypes. Strategies to stimulate tumor regression by promoting polarization to M1 are a novel approach that harnesses the immune system to enhance therapeutic outcomes, including chemotherapy. We recently found that nanotherapy with mesoporous particles loaded with albumin-bound paclitaxel (MSV-nab-PTX) promotes macrophage polarization towards M1 in breast cancer liver metastases (BCLM). However, it remains unclear to what extent tumor regression can be maximized based on modulation of the macrophage phenotype, especially for poorly perfused tumors such as BCLM. Here, for the first time, a CRISPR system is employed to permanently modulate macrophage polarization in a controlled in vitro setting. This enables the design of 3D co-culture experiments mimicking the BCLM hypovascularized environment with various ratios of polarized macrophages. We implement a mathematical framework to evaluate nanoparticle-mediated chemotherapy in conjunction with TAM polarization. The response is predicted to be not linearly dependent on the M1:M2 ratio. To investigate this phenomenon, the response is simulated via the model for a variety of M1:M2 ratios. The modeling indicates that polarization to an all-M1 population may be less effective than a combination of both M1 and M2. Experimental results with the CRISPR system confirm this model-driven hypothesis. Altogether, this study indicates that response to nanoparticle-mediated chemotherapy targeting poorly perfused tumors may benefit from a fine-tuned M1:M2 ratio that maintains both phenotypes in the tumor microenvironment during treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wyld L et al (2003) Prognostic factors for patients with hepatic metastases from breast cancer. Br J Cancer 89(2):284–290PubMedPubMedCentral Wyld L et al (2003) Prognostic factors for patients with hepatic metastases from breast cancer. Br J Cancer 89(2):284–290PubMedPubMedCentral
2.
Zurück zum Zitat van den Eynden GG et al (2013) The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Can Res 73(7):2031–2043 van den Eynden GG et al (2013) The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Can Res 73(7):2031–2043
3.
Zurück zum Zitat Stessels F et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90(7):1429–1436PubMedPubMedCentral Stessels F et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90(7):1429–1436PubMedPubMedCentral
5.
Zurück zum Zitat Braga L et al (2004) Does hypervascularity of liver metastases as detected on MRI predict disease progression in breast cancer patients? AJR Am J Roentgenol 182(5):1207–1213PubMed Braga L et al (2004) Does hypervascularity of liver metastases as detected on MRI predict disease progression in breast cancer patients? AJR Am J Roentgenol 182(5):1207–1213PubMed
6.
Zurück zum Zitat Liu LX, Zhang WH, Jiang HC (2003) Current treatment for liver metastases from colorectal cancer. World J Gastroenterol 9(2):193–200PubMedPubMedCentral Liu LX, Zhang WH, Jiang HC (2003) Current treatment for liver metastases from colorectal cancer. World J Gastroenterol 9(2):193–200PubMedPubMedCentral
7.
Zurück zum Zitat Pezzella F, Gatter KC (2016) Evidence showing that tumors can grow without angiogenesis and can switch between angiogenic and nonangiogenicphenotypes. J Natl Cancer Inst 108(8):djw032PubMedPubMedCentral Pezzella F, Gatter KC (2016) Evidence showing that tumors can grow without angiogenesis and can switch between angiogenic and nonangiogenicphenotypes. J Natl Cancer Inst 108(8):djw032PubMedPubMedCentral
8.
Zurück zum Zitat Leonard F et al (2016) Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale 8(25):12544–12552PubMedPubMedCentral Leonard F et al (2016) Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale 8(25):12544–12552PubMedPubMedCentral
9.
Zurück zum Zitat Daly JM et al (1985) Predicting tumor response in patients with colorectal hepatic metastases. Ann Surg 202(3):384–393PubMedPubMedCentral Daly JM et al (1985) Predicting tumor response in patients with colorectal hepatic metastases. Ann Surg 202(3):384–393PubMedPubMedCentral
11.
Zurück zum Zitat Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217PubMed Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217PubMed
12.
Zurück zum Zitat Martinez FO (2011) Regulators of macrophage activation. Eur J Immunol 41(6):1531–1534PubMed Martinez FO (2011) Regulators of macrophage activation. Eur J Immunol 41(6):1531–1534PubMed
13.
Zurück zum Zitat Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122(3):787–795PubMedPubMedCentral Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122(3):787–795PubMedPubMedCentral
14.
Zurück zum Zitat Jakubzick CV, Randolph GJ, Henson PM (2017) Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 17:349–362PubMed Jakubzick CV, Randolph GJ, Henson PM (2017) Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 17:349–362PubMed
15.
Zurück zum Zitat Galdiero MR et al (2013) Tumor associated macrophages and neutrophils in cancer. Immunobiology 218(11):1402–1410PubMed Galdiero MR et al (2013) Tumor associated macrophages and neutrophils in cancer. Immunobiology 218(11):1402–1410PubMed
17.
Zurück zum Zitat Sica A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727PubMed Sica A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727PubMed
18.
Zurück zum Zitat Cao W et al (2015) Macrophage subtype predicts lymph node metastasis in oesophageal adenocarcinoma and promotes cancer cell invasion in vitro. Br J Cancer 113(5):738–746PubMedPubMedCentral Cao W et al (2015) Macrophage subtype predicts lymph node metastasis in oesophageal adenocarcinoma and promotes cancer cell invasion in vitro. Br J Cancer 113(5):738–746PubMedPubMedCentral
19.
Zurück zum Zitat Pantano F et al (2013) The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. J Cell Mol Med 17(11):1415–1421PubMedPubMedCentral Pantano F et al (2013) The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. J Cell Mol Med 17(11):1415–1421PubMedPubMedCentral
20.
Zurück zum Zitat Georgoudaki A-M et al (2016) Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep 15(9):2000–2011PubMed Georgoudaki A-M et al (2016) Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep 15(9):2000–2011PubMed
21.
Zurück zum Zitat Fuchs AK et al (2016) Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials 85:78–87PubMed Fuchs AK et al (2016) Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials 85:78–87PubMed
22.
Zurück zum Zitat Oronsky B et al (2017) RRx-001: a systemically non-toxic M2-to-M1 macrophage stimulating and prosensitizing agent in Phase II clinical trials. Expert Opin Investig Drugs 26(1):109–119PubMed Oronsky B et al (2017) RRx-001: a systemically non-toxic M2-to-M1 macrophage stimulating and prosensitizing agent in Phase II clinical trials. Expert Opin Investig Drugs 26(1):109–119PubMed
23.
Zurück zum Zitat Nathan MR, Schmid P (2017) The emerging world of breast cancer immunotherapy. Breast 37:200–206PubMed Nathan MR, Schmid P (2017) The emerging world of breast cancer immunotherapy. Breast 37:200–206PubMed
24.
Zurück zum Zitat Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167(3):627–635PubMedPubMedCentral Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167(3):627–635PubMedPubMedCentral
25.
Zurück zum Zitat Leonard F et al (2017) Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel. Front Immunol 8:693PubMedPubMedCentral Leonard F et al (2017) Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel. Front Immunol 8:693PubMedPubMedCentral
26.
Zurück zum Zitat Leonard F, Godin B (2018) Agents for macrophage polarization. Houston Methodist, Houston Leonard F, Godin B (2018) Agents for macrophage polarization. Houston Methodist, Houston
27.
Zurück zum Zitat Babaev VR et al (2018) Loss of rictor in monocyte/macrophages suppresses their proliferation and viability reducing atherosclerosis in LDLR null mice. Front Immunol 9:215PubMedPubMedCentral Babaev VR et al (2018) Loss of rictor in monocyte/macrophages suppresses their proliferation and viability reducing atherosclerosis in LDLR null mice. Front Immunol 9:215PubMedPubMedCentral
28.
Zurück zum Zitat Festuccia WT et al (2014) Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS ONE 9(4):e95432PubMedPubMedCentral Festuccia WT et al (2014) Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS ONE 9(4):e95432PubMedPubMedCentral
29.
Zurück zum Zitat Refuerzo JS et al (2015) Liposomes: a nanoscale drug carrying system to prevent indomethacin passage to the fetus in a pregnant mouse model. Am J Obstet Gynecol 212(4):508 e1–7PubMed Refuerzo JS et al (2015) Liposomes: a nanoscale drug carrying system to prevent indomethacin passage to the fetus in a pregnant mouse model. Am J Obstet Gynecol 212(4):508 e1–7PubMed
30.
Zurück zum Zitat Macklin P et al (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4–5):765–798PubMed Macklin P et al (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4–5):765–798PubMed
31.
Zurück zum Zitat Wu M et al (2013) The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol 320:131–151PubMed Wu M et al (2013) The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol 320:131–151PubMed
32.
Zurück zum Zitat McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–589PubMed McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3):564–589PubMed
33.
Zurück zum Zitat Mahlbacher G et al (2018) Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J Immunother Cancer 6(1):10PubMedPubMedCentral Mahlbacher G et al (2018) Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment. J Immunother Cancer 6(1):10PubMedPubMedCentral
34.
Zurück zum Zitat van de Ven AL et al (2012) Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv 2(1):11208PubMed van de Ven AL et al (2012) Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv 2(1):11208PubMed
35.
Zurück zum Zitat Curtis LT, Frieboes HB (HB) Modeling of combination chemotherapy and immunotherapy for lung cancer. In: 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, Berlin, Germany, pp 273–276 Curtis LT, Frieboes HB (HB) Modeling of combination chemotherapy and immunotherapy for lung cancer. In: 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, Berlin, Germany, pp 273–276
36.
Zurück zum Zitat Hallowell RW et al (2017) mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nat Commun 8:14208PubMedPubMedCentral Hallowell RW et al (2017) mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nat Commun 8:14208PubMedPubMedCentral
37.
Zurück zum Zitat Ambarus CA et al (2012) Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods 375(1–2):196–206PubMed Ambarus CA et al (2012) Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods 375(1–2):196–206PubMed
38.
Zurück zum Zitat Porcheray F et al (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142(3):481–489PubMedPubMedCentral Porcheray F et al (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142(3):481–489PubMedPubMedCentral
39.
Zurück zum Zitat Maeda A et al (2019) Poly(I:C) stimulation is superior than Imiquimod to induce the antitumoral functional profile of tumor-conditioned macrophages. Eur J Immunol 49(5):801–811PubMedPubMedCentral Maeda A et al (2019) Poly(I:C) stimulation is superior than Imiquimod to induce the antitumoral functional profile of tumor-conditioned macrophages. Eur J Immunol 49(5):801–811PubMedPubMedCentral
40.
41.
Zurück zum Zitat Brown JM, Recht L, Strober S (2017) The promise of targeting macrophages in cancer therapy. Clin Cancer Res 23(13):3241–3250PubMedPubMedCentral Brown JM, Recht L, Strober S (2017) The promise of targeting macrophages in cancer therapy. Clin Cancer Res 23(13):3241–3250PubMedPubMedCentral
42.
Zurück zum Zitat Mills CD, Lenz LL, Harris RA (2016) A breakthrough: macrophage-directed cancer immunotherapy. Cancer Res 76(3):513–516PubMedPubMedCentral Mills CD, Lenz LL, Harris RA (2016) A breakthrough: macrophage-directed cancer immunotherapy. Cancer Res 76(3):513–516PubMedPubMedCentral
43.
Zurück zum Zitat Mills CD et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173PubMed Mills CD et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173PubMed
44.
Zurück zum Zitat Pyonteck SM et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272PubMedPubMedCentral Pyonteck SM et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272PubMedPubMedCentral
45.
Zurück zum Zitat Tariq M et al (2017) Macrophage polarization: anti-cancer strategies to target tumor-associated macrophage in breast cancer. J Cell Biochem 118(9):2484–2501PubMed Tariq M et al (2017) Macrophage polarization: anti-cancer strategies to target tumor-associated macrophage in breast cancer. J Cell Biochem 118(9):2484–2501PubMed
47.
Zurück zum Zitat Mahlbacher GE, Reihmer KC, Frieboes HB (2019) Mathematical modeling of tumor-immune cell interactions. J Theor Biol 469:47–60PubMedPubMedCentral Mahlbacher GE, Reihmer KC, Frieboes HB (2019) Mathematical modeling of tumor-immune cell interactions. J Theor Biol 469:47–60PubMedPubMedCentral
48.
Zurück zum Zitat Tanei T et al (2016) Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases. Can Res 76(2):429–439 Tanei T et al (2016) Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases. Can Res 76(2):429–439
49.
Zurück zum Zitat Vogel SN, Carboni JM, Manthey CL (1994) Paclitaxel, a mimetic of bacterial lipopolysaccharide (LPS) in murine macrophages, in taxane anticancer agents. In: Georg GI, Chen TT, Ojima I (eds) American Chemical Society, Washington, DC, pp 162–172 Vogel SN, Carboni JM, Manthey CL (1994) Paclitaxel, a mimetic of bacterial lipopolysaccharide (LPS) in murine macrophages, in taxane anticancer agents. In: Georg GI, Chen TT, Ojima I (eds) American Chemical Society, Washington, DC, pp 162–172
Metadaten
Titel
Nonlinear response to cancer nanotherapy due to macrophage interactions revealed by mathematical modeling and evaluated in a murine model via CRISPR-modulated macrophage polarization
verfasst von
Fransisca Leonard
Louis T. Curtis
Ahmed R. Hamed
Carolyn Zhang
Eric Chau
Devon Sieving
Biana Godin
Hermann B. Frieboes
Publikationsdatum
08.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 5/2020
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-020-02504-z

Weitere Artikel der Ausgabe 5/2020

Cancer Immunology, Immunotherapy 5/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.