Skip to main content
Erschienen in: International Orthopaedics 9/2014

01.09.2014 | Review Article

Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis

verfasst von: Alan Šućur, Vedran Katavić, Tomislav Kelava, Zrinka Jajić, Natasa Kovačić, Danka Grčević

Erschienen in: International Orthopaedics | Ausgabe 9/2014

Einloggen, um Zugang zu erhalten

Abstract

The inflammatory milieu favors recruitment and activation of osteoclasts, and leads to bone destruction as a serious complication associated with arthritis and with other inflammatory processes. The frequency and activity of osteoclast progenitors (OCPs) correspond to arthritis severity, and may be used to monitor disease progression and bone resorption, indicating the need for detailed characterization of the discrete OCP subpopulations. Collectively, current studies suggest that the most potent murine bone marrow OCP population can be identified among lymphoid negative population within the immature myeloid lineage cells, as B220CD3CD11b–/loCD115+CD117+CX3CR1+ and possibly also Ter119CD11cCD135loLy6C+RANK. In peripheral blood the OCP population bears the monocytoid phenotype B220CD3NK1.1CD11b+Ly6ChiCD115+CX3CR1+, presumably expressing RANK in committed OCPs. Much less is known about human OCPs and their regulation in arthritis, but the circulating OCP subset is, most probably, comprised among the lymphoid negative population (CD3CD19CD56), within immature monocyte subset (CD11b+CD14+CD16), expressing receptors for M-CSF and RANKL (CD115+RANK+). Our preliminary data confirmed positive association between the proportion of peripheral blood OCPs, defined as CD3CD19CD56CD11b+CD14+, and the disease activity score (DAS28) in the follow-up samples from patients with psoriatic arthritis receiving anti-TNF therapy. In addition, we reviewed cytokines and chemokines which, directly or indirectly, activate OCPs and enhance their differentiation potential, thus mediating osteoresorption. Control of the activity and migratory behaviour of OCPs as well as the identification of crucial bone/joint chemotactic mediators represent promising therapeutic targets in arthritis.
Literatur
10.
Zurück zum Zitat Del Fattore A, Teti A, Rucci N (2012) Bone cells and the mechanisms of bone remodelling. Front Biosci (Elite Ed) 4:2302–2321CrossRef Del Fattore A, Teti A, Rucci N (2012) Bone cells and the mechanisms of bone remodelling. Front Biosci (Elite Ed) 4:2302–2321CrossRef
12.
Zurück zum Zitat Kinne RW, Stuhlmüller B, Burmester GR (2007) Cells of the synovium in rheumatoid arthritis. Macrophages Arthritis Res Ther 9(6):224CrossRef Kinne RW, Stuhlmüller B, Burmester GR (2007) Cells of the synovium in rheumatoid arthritis. Macrophages Arthritis Res Ther 9(6):224CrossRef
22.
Zurück zum Zitat Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 190(12):1741–1754PubMedCentralPubMedCrossRef Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 190(12):1741–1754PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, Chung YH, Sohn DH, So MW, Lee CK, Robinson WH, Chang EJ (2012) Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther 14(1):R14. doi:10.1186/ar3693 PubMedCentralPubMedCrossRef Hwang SJ, Choi B, Kang SS, Chang JH, Kim YG, Chung YH, Sohn DH, So MW, Lee CK, Robinson WH, Chang EJ (2012) Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther 14(1):R14. doi:10.​1186/​ar3693 PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20(2):177–184. doi:10.1359/jbmr.041114 PubMedCrossRef Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20(2):177–184. doi:10.​1359/​jbmr.​041114 PubMedCrossRef
27.
Zurück zum Zitat Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, Anderson DM, Suda T (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98(8):2544–2554PubMedCrossRef Miyamoto T, Ohneda O, Arai F, Iwamoto K, Okada S, Takagi K, Anderson DM, Suda T (2001) Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98(8):2544–2554PubMedCrossRef
28.
29.
30.
Zurück zum Zitat Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2013) Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28(5):1203–1213. doi:10.1002/jbmr.1822 PubMedCentralPubMedCrossRef Jacome-Galarza CE, Lee SK, Lorenzo JA, Aguila HL (2013) Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J Bone Miner Res 28(5):1203–1213. doi:10.​1002/​jbmr.​1822 PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Xiao Y, Song JY, de Vries TJ, Fatmawati C, Parreira DB, Langenbach GE, Babala N, Nolte MA, Everts V, Borst J (2013) Osteoclast precursors in murine bone marrow express CD27 and are impeded in osteoclast development by CD70 on activated immune cells. Proc Natl Acad Sci USA 110(30):12385–12390. doi:10.1073/pnas.1216082110 PubMedCentralPubMedCrossRef Xiao Y, Song JY, de Vries TJ, Fatmawati C, Parreira DB, Langenbach GE, Babala N, Nolte MA, Everts V, Borst J (2013) Osteoclast precursors in murine bone marrow express CD27 and are impeded in osteoclast development by CD70 on activated immune cells. Proc Natl Acad Sci USA 110(30):12385–12390. doi:10.​1073/​pnas.​1216082110 PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, Boyce BF, Xing L (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281(17):11846–11855. doi:10.1074/jbc.M512624200 PubMedCrossRef Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, Boyce BF, Xing L (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281(17):11846–11855. doi:10.​1074/​jbc.​M512624200 PubMedCrossRef
35.
Zurück zum Zitat Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y, Arai A, Harada S, Kobayashi Y, Nakamichi Y, Penninger JM, Noguchi T, Takahashi N (2011) Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 26(12):2978–2990. doi:10.1002/jbmr.490 PubMedCrossRef Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y, Arai A, Harada S, Kobayashi Y, Nakamichi Y, Penninger JM, Noguchi T, Takahashi N (2011) Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 26(12):2978–2990. doi:10.​1002/​jbmr.​490 PubMedCrossRef
36.
Zurück zum Zitat Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, Hosoya A, Ninomiya T, Nakamura H, Yamamoto Y, Kinugawa S, Nakamura M, Nakamichi Y, Kobayashi Y, Nagasawa S, Oda K, Tanaka H, Tagaya M, Penninger JM, Ito M, Takahashi N (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184(4):541–554. doi:10.1083/jcb.200806139 PubMedCentralPubMedCrossRef Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, Hosoya A, Ninomiya T, Nakamura H, Yamamoto Y, Kinugawa S, Nakamura M, Nakamichi Y, Kobayashi Y, Nagasawa S, Oda K, Tanaka H, Tagaya M, Penninger JM, Ito M, Takahashi N (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184(4):541–554. doi:10.​1083/​jcb.​200806139 PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat De Klerck B, Carpentier I, Lories RJ, Habraken Y, Piette J, Carmeliet G, Beyaert R, Billiau A, Matthys P (2004) Enhanced osteoclast development in collagen-induced arthritis in interferon-gamma receptor knock-out mice as related to increased splenic CD11b + myelopoiesis. Arthritis Res Ther 6(3):R220–R231. doi:10.1186/ar1167 PubMedCentralPubMedCrossRef De Klerck B, Carpentier I, Lories RJ, Habraken Y, Piette J, Carmeliet G, Beyaert R, Billiau A, Matthys P (2004) Enhanced osteoclast development in collagen-induced arthritis in interferon-gamma receptor knock-out mice as related to increased splenic CD11b + myelopoiesis. Arthritis Res Ther 6(3):R220–R231. doi:10.​1186/​ar1167 PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Brühl H, Cihak J, Plachý J, Kunz-Schughart L, Niedermeier M, Denzel A, Rodriguez Gomez M, Talke Y, Luckow B, Stangassinger M, Mack M (2007) Targeting of Gr-1+, CCR2+ monocytes in collagen-induced arthritis. Arthritis Rheum 56(9):2975–2985. doi:10.1002/art.22854 PubMedCrossRef Brühl H, Cihak J, Plachý J, Kunz-Schughart L, Niedermeier M, Denzel A, Rodriguez Gomez M, Talke Y, Luckow B, Stangassinger M, Mack M (2007) Targeting of Gr-1+, CCR2+ monocytes in collagen-induced arthritis. Arthritis Rheum 56(9):2975–2985. doi:10.​1002/​art.​22854 PubMedCrossRef
39.
Zurück zum Zitat Li P, Schwarz EM, O’Keefe RJ, Ma L, Looney RJ, Ritchlin CT, Boyce BF, Xing L (2004) Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum 50(1):265–276. doi:10.1002/art.11419 PubMedCrossRef Li P, Schwarz EM, O’Keefe RJ, Ma L, Looney RJ, Ritchlin CT, Boyce BF, Xing L (2004) Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum 50(1):265–276. doi:10.​1002/​art.​11419 PubMedCrossRef
40.
Zurück zum Zitat Szekanecz Z, Vegvari A, Szabo Z, Koch AE (2010) Chemokines and chemokine receptors in arthritis. Front Biosci (Schol Ed) 2:153–167CrossRef Szekanecz Z, Vegvari A, Szabo Z, Koch AE (2010) Chemokines and chemokine receptors in arthritis. Front Biosci (Schol Ed) 2:153–167CrossRef
41.
Zurück zum Zitat Galliera E, Locati M, Mantovani A, Corsi MM (2008) Chemokines and bone remodeling. Int J Immunopathol Pharmacol 21(3):485–491PubMed Galliera E, Locati M, Mantovani A, Corsi MM (2008) Chemokines and bone remodeling. Int J Immunopathol Pharmacol 21(3):485–491PubMed
42.
Zurück zum Zitat Koizumi K, Saitoh Y, Minami T, Takeno N, Tsuneyama K, Miyahara T, Nakayama T, Sakurai H, Takano Y, Nishimura M, Imai T, Yoshie O, Saiki I (2009) Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J Immunol 183(12):7825–7831. doi:10.4049/jimmunol.0803627 PubMedCrossRef Koizumi K, Saitoh Y, Minami T, Takeno N, Tsuneyama K, Miyahara T, Nakayama T, Sakurai H, Takano Y, Nishimura M, Imai T, Yoshie O, Saiki I (2009) Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. J Immunol 183(12):7825–7831. doi:10.​4049/​jimmunol.​0803627 PubMedCrossRef
43.
Zurück zum Zitat Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 18(8):1404–1418. doi:10.1359/jbmr.2003.18.8.1404 PubMedCrossRef Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 18(8):1404–1418. doi:10.​1359/​jbmr.​2003.​18.​8.​1404 PubMedCrossRef
44.
Zurück zum Zitat Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82PubMedCrossRef Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82PubMedCrossRef
45.
Zurück zum Zitat Kotani M, Kikuta J, Klauschen F, Chino T, Kobayashi Y, Yasuda H, Tamai K, Miyawaki A, Kanagawa O, Tomura M, Ishii M (2013) Systemic circulation and bone recruitment of osteoclast precursors tracked by using fluorescent imaging techniques. J Immunol 190(2):605–612. doi:10.4049/jimmunol.1201345 PubMedCrossRef Kotani M, Kikuta J, Klauschen F, Chino T, Kobayashi Y, Yasuda H, Tamai K, Miyawaki A, Kanagawa O, Tomura M, Ishii M (2013) Systemic circulation and bone recruitment of osteoclast precursors tracked by using fluorescent imaging techniques. J Immunol 190(2):605–612. doi:10.​4049/​jimmunol.​1201345 PubMedCrossRef
47.
Zurück zum Zitat Park-Min KH, Lee EY, Moskowitz NK, Lim E, Lee SK, Lorenzo JA, Huang C, Melnick AM, Purdue PE, Goldring SR, Ivashkiv LB (2013) Negative regulation of osteoclast precursor differentiation by CD11b and β2 integrin-B-cell lymphoma 6 signaling. J Bone Miner Res 28(1):135–149. doi:10.1002/jbmr.1739 PubMedCentralPubMedCrossRef Park-Min KH, Lee EY, Moskowitz NK, Lim E, Lee SK, Lorenzo JA, Huang C, Melnick AM, Purdue PE, Goldring SR, Ivashkiv LB (2013) Negative regulation of osteoclast precursor differentiation by CD11b and β2 integrin-B-cell lymphoma 6 signaling. J Bone Miner Res 28(1):135–149. doi:10.​1002/​jbmr.​1739 PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32(1):1–7PubMedCrossRef Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA (2003) Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 32(1):1–7PubMedCrossRef
49.
Zurück zum Zitat Hase H, Kanno Y, Kojima H, Sakurai D, Kobata T (2008) Coculture of osteoclast precursors with rheumatoid synovial fibroblasts induces osteoclastogenesis via transforming growth factor beta-mediated down-regulation of osteoprotegerin. Arthritis Rheum 58(11):3356–3365. doi:10.1002/art.23971 PubMedCrossRef Hase H, Kanno Y, Kojima H, Sakurai D, Kobata T (2008) Coculture of osteoclast precursors with rheumatoid synovial fibroblasts induces osteoclastogenesis via transforming growth factor beta-mediated down-regulation of osteoprotegerin. Arthritis Rheum 58(11):3356–3365. doi:10.​1002/​art.​23971 PubMedCrossRef
50.
Zurück zum Zitat Kim YG, Lee CK, Oh JS, Kim SH, Kim KA, Yoo B (2010) Effect of interleukin-32gamma on differentiation of osteoclasts from CD14+ monocytes. Arthritis Rheum 62(2):515–523. doi:10.1002/art.27197 PubMed Kim YG, Lee CK, Oh JS, Kim SH, Kim KA, Yoo B (2010) Effect of interleukin-32gamma on differentiation of osteoclasts from CD14+ monocytes. Arthritis Rheum 62(2):515–523. doi:10.​1002/​art.​27197 PubMed
51.
Zurück zum Zitat Sørensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, Karsdal MA (2007) Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 25(1):36–45. doi:10.1007/s00774-006-0725-9 PubMedCrossRef Sørensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, Karsdal MA (2007) Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 25(1):36–45. doi:10.​1007/​s00774-006-0725-9 PubMedCrossRef
52.
Zurück zum Zitat Ikić M, Jajić Z, Lazić E, Ivčević S, Grubišić F, Marušić A, Kovačić N, Grčević D (2014) Association of systemic and intra-articular osteoclastogenic potential, pro-inflammatory mediators and disease activity with the form of inflammatory arthritis. Int Orthop 38(1):183–192. doi:10.1007/s00264-013-2121-0 PubMedCrossRef Ikić M, Jajić Z, Lazić E, Ivčević S, Grubišić F, Marušić A, Kovačić N, Grčević D (2014) Association of systemic and intra-articular osteoclastogenic potential, pro-inflammatory mediators and disease activity with the form of inflammatory arthritis. Int Orthop 38(1):183–192. doi:10.​1007/​s00264-013-2121-0 PubMedCrossRef
53.
Zurück zum Zitat Husheem M, Nyman JK, Vääräniemi J, Vaananen HK, Hentunen TA (2005) Characterization of circulating human osteoclast progenitors: development of in vitro resorption assay. Calcif Tissue Int 76(3):222–230. doi:10.1007/s00223-004-0123-z PubMedCrossRef Husheem M, Nyman JK, Vääräniemi J, Vaananen HK, Hentunen TA (2005) Characterization of circulating human osteoclast progenitors: development of in vitro resorption assay. Calcif Tissue Int 76(3):222–230. doi:10.​1007/​s00223-004-0123-z PubMedCrossRef
54.
Zurück zum Zitat Chiu YH, Mensah KA, Schwarz EM, Ju Y, Takahata M, Feng C, McMahon LA, Hicks DG, Panepento B, Keng PC, Ritchlin CT (2012) Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res 27(1):79–92. doi:10.1002/jbmr.531 PubMedCentralPubMedCrossRef Chiu YH, Mensah KA, Schwarz EM, Ju Y, Takahata M, Feng C, McMahon LA, Hicks DG, Panepento B, Keng PC, Ritchlin CT (2012) Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res 27(1):79–92. doi:10.​1002/​jbmr.​531 PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Petitprez V, Royer B, Desoutter J, Guiheneuf E, Rigolle A, Marolleau JP, Kamel S, Guillaume N (2014) CD14(+) CD16(+) monocytes rather than CD14(+) CD51/61(+) monocytes are a potential cytological marker of circulating osteoclast precursors in multiple myeloma. A preliminary study. Int J Lab Hematol. doi:10.1111/ijlh.12216 PubMed Petitprez V, Royer B, Desoutter J, Guiheneuf E, Rigolle A, Marolleau JP, Kamel S, Guillaume N (2014) CD14(+) CD16(+) monocytes rather than CD14(+) CD51/61(+) monocytes are a potential cytological marker of circulating osteoclast precursors in multiple myeloma. A preliminary study. Int J Lab Hematol. doi:10.​1111/​ijlh.​12216 PubMed
56.
Zurück zum Zitat Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK Expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. doi:10.1359/jbmr.060604 PubMedCrossRef Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK Expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. doi:10.​1359/​jbmr.​060604 PubMedCrossRef
57.
59.
Zurück zum Zitat Baeten D, Boots AM, Steenbakkers PG, Elewaut D, Bos E, Verheijden GF, Berheijden G, Miltenburg AM, Rijnders AW, Veys EM, De Keyser F (2000) Human cartilage gp-39+, CD16+ monocytes in peripheral blood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis Rheum 43(6):1233–1243PubMedCrossRef Baeten D, Boots AM, Steenbakkers PG, Elewaut D, Bos E, Verheijden GF, Berheijden G, Miltenburg AM, Rijnders AW, Veys EM, De Keyser F (2000) Human cartilage gp-39+, CD16+ monocytes in peripheral blood and synovium: correlation with joint destruction in rheumatoid arthritis. Arthritis Rheum 43(6):1233–1243PubMedCrossRef
60.
Zurück zum Zitat Wright LM, Maloney W, Yu X, Kindle L, Collin-Osdoby P, Osdoby P (2005) Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36(5):840–853. doi:10.1016/j.bone.2005.01.021 PubMedCrossRef Wright LM, Maloney W, Yu X, Kindle L, Collin-Osdoby P, Osdoby P (2005) Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36(5):840–853. doi:10.​1016/​j.​bone.​2005.​01.​021 PubMedCrossRef
61.
Zurück zum Zitat Oba Y, Lee JW, Ehrlich LA, Chung HY, Jelinek DF, Callander NS, Horuk R, Choi SJ, Roodman GD (2005) MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp Hematol 33(3):272–278. doi:10.1016/j.exphem.2004.11.015 PubMedCrossRef Oba Y, Lee JW, Ehrlich LA, Chung HY, Jelinek DF, Callander NS, Horuk R, Choi SJ, Roodman GD (2005) MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp Hematol 33(3):272–278. doi:10.​1016/​j.​exphem.​2004.​11.​015 PubMedCrossRef
62.
Zurück zum Zitat Zupan J, Jeras M, Marc J (2013) Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb) 23(1):43–63CrossRef Zupan J, Jeras M, Marc J (2013) Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb) 23(1):43–63CrossRef
64.
Zurück zum Zitat Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1999) Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25(3):255–259PubMedCrossRef Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1999) Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25(3):255–259PubMedCrossRef
66.
Zurück zum Zitat Tanabe N, Maeno M, Suzuki N, Fujisaki K, Tanaka H, Ogiso B, Ito K (2005) IL-1 alpha stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci 77(6):615–626. doi:10.1016/j.lfs.2004.10.079 PubMedCrossRef Tanabe N, Maeno M, Suzuki N, Fujisaki K, Tanaka H, Ogiso B, Ito K (2005) IL-1 alpha stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci 77(6):615–626. doi:10.​1016/​j.​lfs.​2004.​10.​079 PubMedCrossRef
67.
Zurück zum Zitat Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54(1):158–168PubMedCrossRef Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54(1):158–168PubMedCrossRef
68.
Zurück zum Zitat Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, McClanahan T, Bowman EP (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12(1):R29. doi:10.1186/ar2936 PubMedCentralPubMedCrossRef Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, McClanahan T, Bowman EP (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12(1):R29. doi:10.​1186/​ar2936 PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D (2008) IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol 38(10):2845–2854. doi:10.1002/eji.200838192 PubMedCrossRef Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D (2008) IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol 38(10):2845–2854. doi:10.​1002/​eji.​200838192 PubMedCrossRef
70.
Zurück zum Zitat Moon YM, Yoon BY, Her YM, Oh HJ, Lee JS, Kim KW, Lee SY, Woo YJ, Park KS, Park SH, Kim HY, Cho ML (2012) IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis. Arthritis Res Ther 14(6):R246. doi:10.1186/ar4089 PubMedCentralPubMedCrossRef Moon YM, Yoon BY, Her YM, Oh HJ, Lee JS, Kim KW, Lee SY, Woo YJ, Park KS, Park SH, Kim HY, Cho ML (2012) IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis. Arthritis Res Ther 14(6):R246. doi:10.​1186/​ar4089 PubMedCentralPubMedCrossRef
71.
Zurück zum Zitat Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96(5):1873–1878PubMed Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96(5):1873–1878PubMed
72.
Zurück zum Zitat Kwok SK, Cho ML, Park MK, Oh HJ, Park JS, Her YM, Lee SY, Youn J, Ju JH, Park KS, Kim SI, Kim HY, Park SH (2012) Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum 64(3):740–751. doi:10.1002/art.33390 PubMedCrossRef Kwok SK, Cho ML, Park MK, Oh HJ, Park JS, Her YM, Lee SY, Youn J, Ju JH, Park KS, Kim SI, Kim HY, Park SH (2012) Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum 64(3):740–751. doi:10.​1002/​art.​33390 PubMedCrossRef
73.
Zurück zum Zitat Zhang W, Cong XL, Qin YH, He ZW, He DY, Dai SM (2013) IL-18 upregulates the production of key regulators of osteoclastogenesis from fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation 36(1):103–109. doi:10.1007/s10753-012-9524-8 PubMedCrossRef Zhang W, Cong XL, Qin YH, He ZW, He DY, Dai SM (2013) IL-18 upregulates the production of key regulators of osteoclastogenesis from fibroblast-like synoviocytes in rheumatoid arthritis. Inflammation 36(1):103–109. doi:10.​1007/​s10753-012-9524-8 PubMedCrossRef
74.
Zurück zum Zitat Kim KW, Kim HR, Park JY, Park JS, Oh HJ, Woo YJ, Park MK, Cho ML, Lee SH (2012) Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum 64(4):1015–1023. doi:10.1002/art.33446 PubMedCrossRef Kim KW, Kim HR, Park JY, Park JS, Oh HJ, Woo YJ, Park MK, Cho ML, Lee SH (2012) Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum 64(4):1015–1023. doi:10.​1002/​art.​33446 PubMedCrossRef
77.
Zurück zum Zitat Mun SH, Ko NY, Kim HS, Kim JW, Kim do K, Kim AR, Lee SH, Kim YG, Lee CK, Lee SH, Kim BK, Beaven MA, Kim YM, Choi WS (2010) Interleukin-33 stimulates formation of functional osteoclasts from human CD14(+) monocytes. Cell Mol Life Sci CMLS 67(22):3883–3892. doi:10.1007/s00018-010-0410-y CrossRef Mun SH, Ko NY, Kim HS, Kim JW, Kim do K, Kim AR, Lee SH, Kim YG, Lee CK, Lee SH, Kim BK, Beaven MA, Kim YM, Choi WS (2010) Interleukin-33 stimulates formation of functional osteoclasts from human CD14(+) monocytes. Cell Mol Life Sci CMLS 67(22):3883–3892. doi:10.​1007/​s00018-010-0410-y CrossRef
78.
Zurück zum Zitat Kim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH (2014) Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol 66(3):538–548. doi:10.1002/art.38286, PubMed PMID: 24574213PubMedCrossRef Kim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH (2014) Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol 66(3):538–548. doi:10.​1002/​art.​38286, PubMed PMID: 24574213PubMedCrossRef
79.
Zurück zum Zitat Lisignoli G, Piacentini A, Cristino S, Grassi F, Cavallo C, Cattini L, Tonnarelli B, Manferdini C, Facchini A (2007) CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol 210(3):798–806. doi:10.1002/jcp.20905 PubMedCrossRef Lisignoli G, Piacentini A, Cristino S, Grassi F, Cavallo C, Cattini L, Tonnarelli B, Manferdini C, Facchini A (2007) CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol 210(3):798–806. doi:10.​1002/​jcp.​20905 PubMedCrossRef
Metadaten
Titel
Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis
verfasst von
Alan Šućur
Vedran Katavić
Tomislav Kelava
Zrinka Jajić
Natasa Kovačić
Danka Grčević
Publikationsdatum
01.09.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
International Orthopaedics / Ausgabe 9/2014
Print ISSN: 0341-2695
Elektronische ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-014-2386-y

Weitere Artikel der Ausgabe 9/2014

International Orthopaedics 9/2014 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.