Skip to main content
Log in

Biomechanical comparison of transosseous re-fixation of the deep fibres of the distal radioulnar ligaments versus deep and superficial fibres: a cadaver study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

We hypothesized that the re-fixation of the deep and superficial fibres of the distal radioulnar ligaments provide improved stability compared to reconstruction of the deep fibres alone.

Methods

Fourteen fresh-frozen cadaver upper extremities were used for biomechanical testing. Transosseous re-fixation of the deep fibres of the distal radioulnar ligaments alone (single mattress suture group; n = 7) was compared to the transosseous re-attachment of the deep and superficial fibres (double mattress suture group; n = 7). Cyclic load application provoked palmar translation of the radius with respect to the rigidly affixed ulna. Creep, stiffness, and hysteresis were obtained from the load-deformation curves, respectively. Testing was done in neutral forearm rotation, 60° pronation, and 60° supination.

Results

The re-fixation techniques did not differ significantly regarding the viscoelastic parameters creep, hysteresis, and stiffness. Several significant differences of one cycle to the consecutive one within each re-fixation group could be detected especially for creep and hysteresis. No significant differences between the different forearm positions could be detected for each viscoelastic parameter.

Conclusions

The re-fixation techniques did not differ significantly regarding creep, hysteresis, and stiffness. This means that the additional re-attachment of the superficial fibres may not provide greater stability to the DRUJ. Bearing in mind that the study was a cadaver examination with a limited number of specimens we may suppose that the re-attachment of the superficial fibres seem to be unnecessary. A gradual decline of creep and hysteresis from first to last loading-unloading cycle is to be expected and typical of ligaments which are viscoelastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hagert CG (1994) Distal radius fracture and the distal radioulnar joint--anatomical considerations. Handchir Mikrochir Plast Chir 26:22–26

    CAS  PubMed  Google Scholar 

  2. Kleinman WB (2007) Stability of the distal radioulna joint: biomechanics, pathophysiology, physical diagnosis, and restoration of function what we have learned in 25 years. J Hand Surg [Am] 32:1086–1106. doi:10.1016/j.jhsa.2007.06.014

    Article  Google Scholar 

  3. Spies CK, Müller LP, Oppermann J et al (2014) Instability of the distal radioulnar joint - an overview of clinical and radiological procedures regarding their efficacies. Handchir Mikrochir Plast Chir 46:137–150. doi:10.1055/s-0033-1363662

    Article  CAS  PubMed  Google Scholar 

  4. Haugstvedt J, Berger RA, Nakamura T et al (2006) Relative contributions of the ulnar attachments of the triangular fibrocartilage complex to the dynamic stability of the distal radioulnar joint. J Hand Surg [Am] 31:445–451. doi:10.1016/j.jhsa.2005.11.008

    Article  Google Scholar 

  5. Xu J, Tang JB (2009) In vivo changes in lengths of the ligaments stabilizing the distal radioulnar joint. J Hand Surg [Am] 34:40–45. doi:10.1016/j.jhsa.2008.08.006

    Article  CAS  Google Scholar 

  6. Schuind F, An KN, Berglund L et al (1991) The distal radioulnar ligaments: a biomechanical study. J Hand Surg [Am] 16:1106–1114

    Article  CAS  Google Scholar 

  7. Moritomo H (2015) Open repair of the triangular fibrocartilage complex from palmar aspect. J Wrist Surg 4:2–8. doi:10.1055/s-0034-1398474

    Article  PubMed Central  PubMed  Google Scholar 

  8. Nakamura T, Takayama S, Horiuchi Y et al (2001) Origins and insertions of the triangular fibrocartilage complex: a histological study. J Hand Surg (Br) 26:446–454. doi:10.1054/jhsb.2001.0562

    Article  CAS  Google Scholar 

  9. Moriya T, Aoki M, Iba K et al (2009) Effect of triangular ligament tears on distal radioulnar joint instability and evaluation of three clinical tests: a biomechanical study. J Hand Surg Eur Vol 34:219–223. doi:10.1177/1753193408098482

    Article  CAS  PubMed  Google Scholar 

  10. Haugstvedt J, Berger RA, Berglund LJ et al (2002) An analysis of the constraint properties of the distal radioulnar ligament attachments to the ulna. J Hand Surg [Am] 27:61–67

    Article  Google Scholar 

  11. Hagert E, Hagert C (2010) Understanding stability of the distal radioulnar joint through an understanding of its anatomy. Hand Clin 26:459–466. doi:10.1016/j.hcl.2010.05.002

    Article  PubMed  Google Scholar 

  12. Gofton WT, Gordon KD, Dunning CE et al (2004) Soft-tissue stabilizers of the distal radioulnar joint: an in vitro kinematic study. J Hand Surg [Am] 29:423–431. doi:10.1016/j.jhsa.2004.01.020

    Article  Google Scholar 

  13. Petersen MS, Adams BD (1993) Biomechanical evaluation of distal radioulnar reconstructions. J Hand Surg [Am] 18:328–334. doi:10.1016/0363-5023(93)90370-I

    Article  CAS  Google Scholar 

  14. Atzei A, Luchetti R, Braidotti F (2015) Arthroscopic foveal repair of the triangular fibrocartilage complex. J Wrist Surg 4:22–30. doi:10.1055/s-0035-1544226

    Article  PubMed Central  PubMed  Google Scholar 

  15. Farr S, Zechmann U, Ganger R et al (2015) Clinical experience with arthroscopically-assisted repair of peripheral triangular fibrocartilage complex tears in adolescents-technique and results. Int Orthop. doi:10.1007/s00264-015-2795-6

    Google Scholar 

  16. Iwasaki N, Nishida K, Motomiya M et al (2011) Arthroscopic-assisted repair of avulsed triangular fibrocartilage complex to the fovea of the ulnar head: a 2- to 4-year follow-up study. Arthroscopy 27:1371–1378. doi:10.1016/j.arthro.2011.05.020

    Article  PubMed  Google Scholar 

  17. Iwasaki N, Minami A (2009) Arthroscopically assisted re-attachment of avulsed triangular fibrocartilage complex to the fovea of the ulnar head. J Hand Surg [Am] 34:1323–1326. doi:10.1016/j.jhsa.2009.02.026

  18. Atzei A (2009) New trends in arthroscopic management of type 1-B TFCC injuries with DRUJ instability. J Hand Surg Eur Vol 34:582–591. doi:10.1177/1753193409100120

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura T, Nakao Y, Ikegami H et al (2004) Open repair of the ulnar disruption of the triangular fibrocartilage complex with double three-dimensional mattress suturing technique. Tech Hand Up Extrem Surg 8:116–123. doi:10.1097/01.bth.0000126573.05697.29

    Article  PubMed  Google Scholar 

  20. Martineau PA, Bergeron S, Beckman L et al (2005) Reconstructive procedure for unstable radial-sided triangular fibrocartilage complex avulsions. J Hand Surg [Am] 30:727–732. doi:10.1016/j.jhsa.2005.01.006

    Article  Google Scholar 

  21. Chou KH, Sarris IK, Sotereanos DG (2003) Suture anchor repair of ulnar-sided triangular fibrocartilage complex tears. J Hand Surg (Br) 28:546–550

    Article  CAS  Google Scholar 

  22. Spies CK, Müller LP, Unglaub F et al (2014) Anatomical transosseous fixation of the deep and superficial fibres of the radioulnar ligaments. Arch Orthop Trauma Surg 134:1783–1788. doi:10.1007/s00402-014-2103-8.

  23. Garcia-Elias M, Smith DE, Llusá M (2003) Surgical approach to the triangular fibrocartilage complex. Tech Hand Up Extrem Surg 7:134–140

    Article  PubMed  Google Scholar 

  24. Garcia-Elias M (2012) Clinical examination of the ulnar-sided painful wrist. In: del Piñal F (ed) Arthroscopic management of ulnar pain. Springer Berlin Heidelberg; Imprint: Springer, Berlin, Heidelberg, pp 25–44

  25. Dy CJ, Ouellette EA, Makowski AH et al (2012) Peripheral triangular fibrocartilage complex tears cause ulnocarpal instability: a biomechanical pilot study. Clin Orthop Relat Res 470:2771–2775. doi:10.1007/s11999-012-2399-z

    Article  PubMed Central  PubMed  Google Scholar 

  26. af Ekenstam F, Hagert CG (1985) Anatomical studies on the geometry and stability of the distal radio ulnar joint. Scand J Plast Reconstr Surg 19:17–25

    Article  CAS  PubMed  Google Scholar 

  27. Werner FW, Taormina JL, Sutton LG et al (2011) Structural properties of 6 forearm ligaments. J Hand Surg [Am] 36:1981–1987. doi:10.1016/j.jhsa.2011.09.026

    Article  Google Scholar 

  28. Pirela-Cruz MA, Goll SR, Klug M et al (1991) Stress computed tomography analysis of the distal radioulnar joint: a diagnostic tool for determining translational motion. J Hand Surg [Am] 16:75–82

    Article  CAS  Google Scholar 

  29. Moritomo H, Kataoka T (2014) Palmar reconstruction of the triangular fibrocartilage complex for static instability of the distal radioulnar joint. Tech Hand Up Extrem Surg 18:110–115. doi:10.1097/BTH.0000000000000047

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Thomas Bruckner, PhD, Department of Medical Biometry and Informatics, Heidelberg, Germany for his statistical advice.

We thank Mrs. Jutta Knifka, Department of Orthopaedics and Traumatology, University Hospital Cologne, Germany, for her relentless support.

Special thanks to Mr. Martin Külser-Feldker, Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany, for his great expertise.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional ethics committee and with the 1964 Helsinki declaration.

Funding

The study was supported by a grant of the Richard and Annemarie Wolf Foundation. The first author appreciates the financial support kindly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian K. Spies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 4

a-b *Significantly (p < 0.05) different from the preceding cycle within the group (both groups: n = 7). c *Significantly (p < 0.05) different from the preceding cycle within the group (single mattress suture group: n = 7; double mattress suture group: n = 6) (DOCX 14 kb)

ESM 2

(DOCX 12 kb)

ESM 3

(DOCX 14 kb)

Fig. 5

a *Significantly (p < 0.05) different from the preceding cycle within the group (single mattress suture group: n = 7; double mattress suture group: n = 6). b-c *Significantly (p < 0.05) different from the preceding cycle within the group (both groups: n = 7) (DOCX 14 kb)

ESM 5

(DOCX 14 kb)

ESM 6

(DOCX 12 kb)

Fig. 6

a-c *Significantly (p < 0.05) different from the preceding cycle within the group (both groups: n = 7) (DOCX 14 kb)

ESM 8

(DOCX 14 kb)

ESM 9

(DOCX 12 kb)

Fig. 7

a-c *Significantly (p < 0.05) different from the preceding cycle within the group (all groups: n = 7) (DOCX 16 kb)

ESM 11

(DOCX 16 kb)

ESM 12

(DOCX 16 kb)

Fig. 8

a *Significantly (p < 0.05) different from the preceding cycle within the group (neutral: n = 7; pronation: n = 6; supination: n = 7). b *Significantly (p < 0.05) different from the preceding cycle within the group (all groups: n = 7). c *Significantly (p < 0.05) different from the preceding cycle within the group (neutral: n = 6; pronation: n = 7; supination: n = 7) (DOCX 16 kb)

ESM 14

(DOCX 16 kb)

ESM 15

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spies, C.K., Niehoff, A., Unglaub, F. et al. Biomechanical comparison of transosseous re-fixation of the deep fibres of the distal radioulnar ligaments versus deep and superficial fibres: a cadaver study. International Orthopaedics (SICOT) 40, 315–321 (2016). https://doi.org/10.1007/s00264-015-2986-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2986-1

Keywords

Navigation