Skip to main content
Erschienen in: International Orthopaedics 5/2021

Open Access 12.09.2020 | Original Paper

Does auxiliary cerclage wiring provide intrinsic stability in cephalomedullary nailing of trochanteric and subtrochanteric fractures?

verfasst von: Julia Rehme, Alexander Woltmann, Andreas Brand, Christian von Rüden

Erschienen in: International Orthopaedics | Ausgabe 5/2021

Abstract

Purpose

The aim of this study was to assess functional and radiological results following cephalomedullary nailing with and without use of auxiliary cable cerclages in a large series of trochanteric and subtrochanteric femoral fractures.

Methods

In a retrospective study of prospectively collected data between January 2014 and March 2019, a total of 260 consecutive patients (155 women and 105 men) with the diagnosis of AO/OTA A1 to A3 fractures were included. The mean age of patients was 76.4 ± 15.6 years. According to the AO/OTA classification, 72 A1 fractures, 124 A2 fractures, and 64 A3 fractures were found. In 72 patients with auxiliary cerclage wiring three A1 fractures, 27 A2 fractures and 42 A3 fractures were assessed. In the patient group with auxiliary cerclages, fracture healing according to the Radiographic Union Score for Hip (RUSH) within one year after surgery was assessed in 68 out of 72 patients (healing rate 94%). The mean RUSH in the group with cerclages was 28.7 ± 2.2 points and was 28.5 ± 2.2 points in the group without cerclages (p = 0.72). In 91 patients available for a complete follow-up, mean functional outcome according to the Lower Extremity Functional Scale (LEFS) was 65.3 ± 17.2 points in the group with cerclages versus 58.4 ± 21 points in the group without cerclages (p = 0.04).

Conclusion

The additional use of cerclages provides intrinsic stability and enables axial alignment and medial cortical support during anatomical fracture reduction and cephalomedullary nail insertion. In the current study, this technique resulted in significantly better functional long-term outcomes than without cerclages. Therefore, it can be recommended as a useful supportive tool especially in comminuted trochanteric and subtrochanteric fractures. Trial registration number DRKS00020550, 01/30/2020, retrospectively registered.
Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The proximal femoral fracture is a typical injury to the elderly [1]. A fracture can be demonstrated with increasing age, especially following minor trauma [2, 3]. Due to the demographic change, an increasing incidence of these fractures may be expected in the future. Basically, trochanteric fractures include two-fragment Arbeitsgemeinschaft für Osteosynthesefragen (AO)/Orthopaedic Trauma Association (OTA) type 31 A1 fractures, most frequently multi-fragmentary trochanteric AO/OTA type A2 fractures, and rarely reversed AO/OTA type A3 fractures and can be distinguished from highly unstable subtrochanteric fractures [4, 5]. A general consensus on the surgical management of these unstable fractures remains controversial. Cephalomedullary nailing currently is the gold standard for internal stabilization [6]. The extent contributes to the therapy decision as well as to the direction of instability, which increases from proximal to distal. A distinction can be made between the mediolateral, the rotatory, and the craniocaudal instability. The aim of internal fixation is to neutralize this instability biomechanically through the inserted implant in such a way that the anatomical fracture reduction and retention is feasible. While extramedullary implants are recommended for stable fractures, intramedullary force carriers will be favoured with increasing rotational instability or mediolateral component (AO/OTA type A2 fractures) [7]. With additional craniocaudal instability and shaft extensions, extended cephalomedullary nails are used as standard implants [7]. For fracture healing, anatomical reduction, correct choice of implant, and exact positioning of the lag screw are essential preconditions for primary stability [8, 9]. Furthermore, the primary stability of an implant is given when bending forces arising from normal loads and the resulting displacements during implant insertion do not weaken, damage, or inhibit the mechanical osseous integration and do not have any negative effects on the biological osseous integration [7, 10]. Due to the fracture configuration, there is often an indication for the use of one or more supplemental cable cerclages aiming for safe fracture reduction as well as increased intrinsic primary stability as a prerequisite for complication-free osseous healing. Basically, adequate primary stability is always a precondition for timely secondary stability and osseous integration [11]. However, there is still disagreement whether auxiliary cerclages may only be used temporarily as a reduction aid or whether they can be left in situ [1214]. The use of cerclages is also suspected of disrupting the blood flow to the periosteum depending on the position and thus endangering fracture healing [1518]. Cerclages also may harbor the risk of vascular and nervous complications in terms of the nature of the system [1921].
Data on clinical and radiological long-term course in a large number of patients has been scarce so far in the literature. Therefore, the aim of this study was to evaluate long-term functional and radiological results following cephalomedullary nailing with and without the use of auxiliary cable cerclages in a large series of trochanteric and subtrochanteric femoral fractures.

Methods

A retrospective analysis of prospectively collected data from the in-house database in a level I trauma centre was carried out for consecutive patients from January 2014 to March 2019 with AO/OTA 31 A1 to A3 fractures which were stabilized using cephalomedullary nailing with or without the use of additional cable cerclage wiring (Fig. 1). Pre-operative, intra-operative, and post-operative anterior-posterior (AP) and lateral radiographs as well as the entire medical case documentation were examined. In reasoned cases, pre-operatively additional computed-tomography (CT) scans were performed for better visualization of the fracture configuration. Fracture coding according to the AO/OTA classification was performed by two independent observers, both of them senior orthopaedic surgeons.

Surgical procedure

The surgical procedure was carried out in a standardized manner in all cases. Image-controlled storage and reduction was carried out in supine position on the traction table in AO/OTA 31 A1 and A2 fractures (Fig. 2a–e). Fractures were addressed through a standard lateral access and initially reduced in closed technique using the traction table. In AO/OTA 31 A3 fractures, the surgical procedure was performed using the lateral decubitus position without any traction device and free draping of the injured leg [22]. In the group with auxiliary cerclages, open anatomical fracture reduction was performed including the subsequent insertion of one to three 2-mm cerclages (Dall-Miles™ Cable System, Stryker Corp., Kalamazoo, MI, USA: Fig. 3a–c). In both groups, the cephalomedullary nail was implanted according to the manufacturer’s specifications (Gamma3®, Stryker Corp., Kalamazoo, MI, USA; INTERTAN, Smith & Nephew Inc., Memphis, TN, USA). Pathological fractures, periprosthetic fractures, and fractures treated by fracture total hip arthroplasty or by extramedullary fixation devices were excluded from the study, as were patients younger than 18 years and patients who could not give their informed consent.

Follow-up

Sequential clinical and radiological follow-up examination AP and lateral radiographs were carried out at regular office visits, six weeks, 12 weeks, and at the most recent visit in our outpatient department. The main outcome parameters of the surgical intervention were defined as follows: Patient satisfaction was evaluated using the Lower Extremity Functional Scale (LEFS) [23]. The LEFS consists 20 items, each with a maximum score of 4 points. The total possible score of 80 points indicates a high functional level of the lower extremity. Osseous consolidation rates including stability at the fracture site and radiological elimination of fracture lines in two planes of X-rays were evaluated using the radiographic union score for hip (RUSH) [24]. Besides, complication rates were rated.

Statistical analysis

The data collected was managed with Excel® for Windows® (Microsoft Corp., Redmond, WA, USA). IBM SPSS® Statistics for Windows 19.0 (IBM Corp., Armonk, NY, USA) was used for statistical evaluation of the results. Results of this study are presented as mean ± standard deviation (SD). The Kolmogorov-Smirnov test was used to check the normal distribution. Significance was statistically calculated based on the t test. A result was considered to be statistically significant with p value < 0.05.

Results

The retrospective analysis of our in-house database with regard to trochanteric and subtrochanteric femoral fractures in a five year period revealed a total of 260 patients with AO/OTA A1 to A3 fractures stabilized using a cephalomedullary nail with and without supplemental cerclage wiring. The causes of accident were falls from a standing position in 194 patients, falls from a height more than three metres in 27 patients, high-speed trauma in road traffic in 13 patients, bicycle accidents in 14 patients, and 12 fractures in connection with sports injuries. Of all 260 cases, 256 were primarily presented in our hospital. Twelve fractures occurred in the context of an occupational trauma. One hundred and fifty-five women and 105 men were found among the 260 patients. Mean age of patients was 76.4 ± 15.6 years. Nineteen patients (7%) were younger than 50 years. According to the AO/OTA classification, 72 × A1 fractures (26 × A1.1, 40 × A1.2, 6 × A1.3), 124 × A2 fractures (60 × A2.1, 35 × A2.2, 29 × A2.3), and 64 × A3 fractures (25 × A3.1, 10 × A3.2, 29 × A3.3) were found. In 72 patients, open reduction and internal fixation with cephalomedullary nailing and auxiliary cerclage wiring was used. In these 72 patients with auxiliary cerclages, three A1 fractures, 27 A2 fractures, and 42 A3 fractures were assessed. Among the 72 patients with auxiliary cerclages, six times an intramedullary nail of the standard length (180–200 mm) and 66 times a long intramedullary nail (220–420 mm) were utilized. Eleven times three cerclages (15%), 31 times two cerclages (43%), and 30 times one cerclage (42%) were used (Fig. 1). Operation time was 122.5 ± 36.9 minutes in the treatment group with cerclages versus 66.7 ± 25.6 minutes in the group without cerclages (p < 0.001).
Fracture healing according to the Radiographic Union Score for Hip (RUSH) within one year after surgery was evaluated in 248 out of 260 patients (95%). In the patient group without cerclages, osseous consolidation within one year after surgery was found in 180 out of 188 patients (96%). In the patient group with auxiliary cerclages, fracture healing was detected in 68 out of 72 patients (healing rate 94%). The RUSH in the group with cerclages was 28.7 ± 2.2 points and was 28.5 ± 2.2 points in the group without cerclages (p = 0.72).
Ninety-one patients were available for a complete functional and radiological follow-up after 38.1 ± 20.4 months in the treatment group with cerclages respectively after 41.9 ± 19.1 months in the treatment group without cerclages (p = 0.34), among them 44 females and 47 male patients with an age of 63.6 ± 16.1 years (group with cerclages) versus 65.5 ± 14.5 (group without cerclages) (p = 0.56). Fifty-five patients died prior to final follow-up. The remaining patients were lost to follow-up due to relocation and other reasons.
Independent of the fracture pattern (A1 + A2 + A3 fractures), functional outcome according to the LEFS was 65.3 ± 17.2 points in the group with cerclages versus 58.4 ± 21 points in the group without cerclages (p = 0.04: Fig. 4). The LEFS in AO/OTA type A1 and A2 fractures only was 63.8 ± 17.3 points with auxiliary cerclages versus 62.7 ± 19.3 without cerclages (p = 0.84). Focusing on the treatment group with auxiliary cerclages (n = 47), the LEFS score was 62.9 ± 17.3 points in AO/OTA type A1 and A2 fractures (n = 22) compared with 67.4 ± 15.5 points in AO/OTA type A3 fractures (n = 25) (p = 0.18).

Complications

The following intra-operative and post-operative complications with and without use of auxiliary cerclages were determined on the basis of the pre-operative and post-operative radiographs and patients’ data: The complications in the patient group with auxiliary cerclages did not result in any vascular injury, but in three surgical revisions (1 torsional deviation, 1 seroma, and 1 hematoma). Nonunion rate in this treatment group was 6% (4 out of 72 patients). In the patient group without auxiliary cerclages, wound secretion without the need for surgical revision was assessed. Nonunion rate in this group was 4% (8 out of 188 patients).

Discussion

Although there is still no clear evidence on the superiority of any surgical technique for unstable trochanteric and subtrochanteric fractures, cephalomedullary nailing has been demonstrated to be the most successful treatment option [25]. Despite advances in the surgical management of subtrochanteric and reverse obliquity fractures, in particular with the use of the extended version of cephalomedullary nails, functional outcomes remain worse than in other proximal femoral fractures [26]. Trochanteric fractures possess some aetiological and demographic differences: Women with trochanteric fractures are older, have more severe and generalized bone loss, and more frequently suffer from other osteoporotic fractures [24]. Fracture reduction in elder patients is complicated especially in terms of poor bone quality, comorbidities, and unfavourable fracture configurations [22]. Due to the lack of clear evidence regarding the optimal surgical treatment, implant choice is often based on biomechanical performance: Concerning unstable fractures, modern nail designs including interlocking lag screws provide improved biomechanical performance with controlled impaction of the fracture and a close-to-central weight-bearing axis in the femoral shaft [27]. An optional supplemental cable cerclage is able to minimize the opening of the fracture gap medially and to neutralize relevant varus bending forces in trochanteric and subtrochanteric fractures and thereby maintains the biomechanically important medial pillar providing increased intrinsic primary stability [1, 26]. This supportive effect is located at the heart of any stable osteosynthesis [27]. The medial pillar is under enormous loading pressure when the proximal femur is subjected to axial loads. The lateral pillar, on the other hand, is under the influence of tensile forces [2831]. If anatomical reduction cannot be achieved sufficiently, the biomechanical basis for the necessary stability and the subsequent bone healing is missing. The supplemental use of cable cerclage wiring also reduces the risk of secondary varization of the axis and related complications [3235]. The current study can contribute to this key point to the extent that the results have confirmed the above-mentioned intrinsic stability clinically.
Another problem is that common classifications such as the AO/OTA classification do not reasonably represent certain fracture configurations such as sagittal fracture lines (Fig. 2d). Although these fractures then formally correspond to a “simple” fracture shape, in reality, they are much more complex to fix. In these cases, the additional application of an auxiliary cerclage is necessary, although formally, a “simple” fracture according to conventional classifications may be present. Conversely, our results demonstrate that a more complex fracture according to the AO/OTA classification may be present, but in reality, it can be well fixed using singular cephalomedullary nail fixation without the use of additive cerclages.
Although the auxiliary cerclage is a somewhat more invasive additional intra-operative measure, it can in turn reduce the risk of fixation failure relevantly. The damage to the soft tissue has to be weighed against the benefits of the technique. In a previous biomechanical study, it could be demonstrated that after cyclic loading in highly unstable subtrochanteric fractures fixed using cephalomedullary nailing without any additional cerclage, all fractures displaced due to medial dislocation [34]. Conversely, our results encourage the next step to carry out biomechanical tests to measure the exact level of intrinsic stability. Therefore, anatomical reduction of the fracture partners is of great importance for increased healing rates and decreased complication rates [35].
Special care should be taken with regard to vascular injuries when inserting the cerclage. However, if this is standardized and used carefully, the complication rates are known to be relatively low [36]. These findings can be confirmed by the results of our study. After performing a precise surgery protocol, we could not find any significant differences regarding complication rates in both treatment groups.
Another aspect of this study was the operation time. There is common consensus that on open surgical fixation including usage of supplemental fixation tools needs more time than a closed and often called “minimally invasive” reduction technique. In our study, the operation time was significantly longer in the treatment group with cerclages compared with the treatment group without cerclages. But if one takes a look at the fracture configurations treated in both groups, one will find that in the treatment group with cerclages, there are about 60% of AO/OTA type A3 fractures and only about 40% of AO/OTA type A1 and A2 fractures, while in the treatment group without cerclages, only about 10% of the fractures were classified as AO/OTA type A3 fractures (Fig. 1). Hence, the extended operation time is not only with regard to the use of auxiliary cerclages but also to the more complex fracture pattern requiring a more complex surgical technique.
The use of supplemental cerclage wiring is also suspected of disrupting the blood supply to the periosteum and thus endangering bone healing [1012]. Nevertheless, sufficient evidence for this still is not available. Basically, in contrast to other anatomical regions, the femur seems to be a benign region for the insertion of cerclages [3639]. We are able to contribute new aspects to this subject in so far that the clinical results of the current study including a healing rate of 95% do not indicate relevant disruption of the blood circulation. Eventually, our clinical results indicate that auxiliary cerclage wiring is more relevantly facilitating anatomical fracture reduction than disrupting the regional blood circulation.
In principle, there is only one relevant study describing that the use of auxiliary cerclages is associated with faster fracture healing, better functional results, and lower complication rates compared with the control group without cerclage [14]. The functional findings of the current study more than three years after surgery demonstrated significantly better functional results after the use of auxiliary cerclages, independent of patients’ age. However, in terms of the fracture healing, we could not find any significant differences between the treatment groups.
Besides, there is also no relevant study concerning the optimal number of cerclages yet. In general, it seems to be important to precisely evaluate the fracture configuration and to classify the fracture according to an established classification system for surgical decision-making. In the present study, one or two cerclages were used in the majority of cases (85%), while three cerclages remained the exception (15%). This is in line with recent studies, where also mainly one cerclage was used [3235]. In our setting, the use of additional cerclage wiring meanwhile is considered as gold standard with more than 80% of AO/OTA type A3 fractures treated using this technique.

Study limitations

On the one hand, strengths of this study can be seen in the fact that all patients were managed in the same hospital by the same team of surgeons using a standard treatment protocol provided by Codesido et al. [14]. On the other hand, the retrospective character of the study might be seen as a limitation. It was also not possible to randomize age, gender, and indication for the additional use of cable cerclages, as these were determined by the fracture pattern and by the resulting decision of the treating surgeon and were not subject to a randomized protocol.

Conclusion

The additional use of cerclages provides intrinsic stability and enables axial alignment and medial cortical support during anatomical fracture reduction and cephalomedullary nail insertion. This contributes to the stability of the entire fixation construct and can maximize the load sharing properties of cephalomedullary nailing resulting in optimal healing rates and minimal complication rates. In the current study, this technique resulted in significantly better functional long-term outcomes than without cerclages. Therefore, it can be recommended as a useful supportive tool especially in comminuted trochanteric and subtrochanteric femoral fractures.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All human examinations described in this study were carried out with the approval of the responsible institutional and national ethics committee of the Bavarian State Chamber of Physicians (BLÄK, ID: 2019-170), in accordance with national law and with the Helsinki Declaration in its current version.
This clinical trial was conducted according to the requirements of the International Committee of Medical Journal Editors (ICMJE) and has been retrospectively registered with the German Clinical Trials Register (DRKS, trial registration number: DRKS00020550), an approved Primary Register in the World Health Organization network.
Written informed consent to participate was obtained from the patients.
There is an informed consent from all the patients involved. All patients who may be identified by means of images or by other information within the manuscript have given their written consent for publication.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Wu SC, Rau CS, Kuo SCH, Chien PC, Hsieh CH (2019) The influence of ageing on the incidence and site of trauma femoral fractures: a cross-sectional analysis. BMC Musculoskelet Disord 20(1):413PubMedPubMedCentralCrossRef Wu SC, Rau CS, Kuo SCH, Chien PC, Hsieh CH (2019) The influence of ageing on the incidence and site of trauma femoral fractures: a cross-sectional analysis. BMC Musculoskelet Disord 20(1):413PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Bouxsein ML, Kaufman J, Tosi L, Cummings S, Lane J, Johnell O (2004) Recommendations for optimal care of the fragility fracture patient to reduce the risk of future fracture. J Am Acad Orthop Surg 12:385–395PubMedCrossRef Bouxsein ML, Kaufman J, Tosi L, Cummings S, Lane J, Johnell O (2004) Recommendations for optimal care of the fragility fracture patient to reduce the risk of future fracture. J Am Acad Orthop Surg 12:385–395PubMedCrossRef
3.
Zurück zum Zitat Häussler B, Gothe H, Göl D, Glaeske G, Pientka L, Felsenberg D (2007) Epidemiology, treatment and costs of osteoporosis in Germany – the BoneEVA study. Osteoporos Int 18:77–84PubMedCrossRef Häussler B, Gothe H, Göl D, Glaeske G, Pientka L, Felsenberg D (2007) Epidemiology, treatment and costs of osteoporosis in Germany – the BoneEVA study. Osteoporos Int 18:77–84PubMedCrossRef
4.
Zurück zum Zitat Lohmann R, Haid K, Stöckle U, Raschke M (2007) Epidemiology and perspectives in traumatology of the elderly. Unfallchirurg 110:553–562PubMedCrossRef Lohmann R, Haid K, Stöckle U, Raschke M (2007) Epidemiology and perspectives in traumatology of the elderly. Unfallchirurg 110:553–562PubMedCrossRef
5.
Zurück zum Zitat Wagner S, Rüter A (1999) Per- and subtrochanteric femur fractures. Unfallchirurg 102:206–222PubMedCrossRef Wagner S, Rüter A (1999) Per- and subtrochanteric femur fractures. Unfallchirurg 102:206–222PubMedCrossRef
6.
Zurück zum Zitat Hierholzer C, Friederichs J, Augat P, Woltmann A, Trapp O, Bühren V, von Rüden C (2018) Evolution and principles of intramedullary locked nailing. Unfallchirurg 121(3):239–255PubMedCrossRef Hierholzer C, Friederichs J, Augat P, Woltmann A, Trapp O, Bühren V, von Rüden C (2018) Evolution and principles of intramedullary locked nailing. Unfallchirurg 121(3):239–255PubMedCrossRef
7.
Zurück zum Zitat von Rüden C, Hungerer S, Augat P, Trapp O, Bühren V, Hierholzer C (2015) Breakage of cephalomedullary nailing in operative treatment of trochanteric and subtrochanteric femoral fractures. Arch Orthop Trauma Surg 135:179–185CrossRef von Rüden C, Hungerer S, Augat P, Trapp O, Bühren V, Hierholzer C (2015) Breakage of cephalomedullary nailing in operative treatment of trochanteric and subtrochanteric femoral fractures. Arch Orthop Trauma Surg 135:179–185CrossRef
8.
Zurück zum Zitat Morvan A, Boddaert J, Cohen-Bittan J, Picard H, Pascal-Mousselard H, Khiami F (2018) Risk factors for cut-out after internal fixation of trochanteric fractures in elderly subjects. Orthop Traumatol Surg Res 104(8):1183–1187PubMedCrossRef Morvan A, Boddaert J, Cohen-Bittan J, Picard H, Pascal-Mousselard H, Khiami F (2018) Risk factors for cut-out after internal fixation of trochanteric fractures in elderly subjects. Orthop Traumatol Surg Res 104(8):1183–1187PubMedCrossRef
9.
Zurück zum Zitat Herzog J, Wendlandt R, Hillbricht S, Burgkart R, Schulz AP (2019) Optimising the tip-apex-distance in trochanteric femoral fracture fixation using the ADAPT-navigated technique, a longitudinal matched cohort study. Injury 50(3):744–751PubMedCrossRef Herzog J, Wendlandt R, Hillbricht S, Burgkart R, Schulz AP (2019) Optimising the tip-apex-distance in trochanteric femoral fracture fixation using the ADAPT-navigated technique, a longitudinal matched cohort study. Injury 50(3):744–751PubMedCrossRef
10.
Zurück zum Zitat von Rüden C, Augat P (2016) Failure of fracture fixation in osteoporotic bone. Injury 47(Suppl2):S3–S10CrossRef von Rüden C, Augat P (2016) Failure of fracture fixation in osteoporotic bone. Injury 47(Suppl2):S3–S10CrossRef
11.
Zurück zum Zitat Albrektsson TBP, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170PubMedCrossRef Albrektsson TBP, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170PubMedCrossRef
13.
Zurück zum Zitat Rommens PM, Kuechle R, Hofmann A, Dietz SO (2019) Reduction techniques in intramedullary nailing osteosynthesis. Unfallchirurg 122(2):95–102PubMedCrossRef Rommens PM, Kuechle R, Hofmann A, Dietz SO (2019) Reduction techniques in intramedullary nailing osteosynthesis. Unfallchirurg 122(2):95–102PubMedCrossRef
14.
Zurück zum Zitat Codesido P, Mejía A, Riego J, Ojeda-Thies C (2017) Cerclage wiring through a mini-open approach to assist reduction of subtrochanteric fractures treated with cephalomedullary fixation: surgical technique. J Orthop Trauma 31(8):e263–e268PubMedCrossRef Codesido P, Mejía A, Riego J, Ojeda-Thies C (2017) Cerclage wiring through a mini-open approach to assist reduction of subtrochanteric fractures treated with cephalomedullary fixation: surgical technique. J Orthop Trauma 31(8):e263–e268PubMedCrossRef
15.
Zurück zum Zitat Alvarez DB, Aparicio JP, Fernandez EL, Múgica IG, Batalla DN, Jiménez JP (2004) Implant breakage, a rare complication with the gamma nail. A review of 843 fractures of the proximal femur treated with a gamma nail. Acta Orthop Belg 70(5):435–443PubMed Alvarez DB, Aparicio JP, Fernandez EL, Múgica IG, Batalla DN, Jiménez JP (2004) Implant breakage, a rare complication with the gamma nail. A review of 843 fractures of the proximal femur treated with a gamma nail. Acta Orthop Belg 70(5):435–443PubMed
17.
Zurück zum Zitat Wozasek G, Radler C, Vecsei V (2002) Multiple gamma nail failure. Orthopedics 25(2):183–185PubMedCrossRef Wozasek G, Radler C, Vecsei V (2002) Multiple gamma nail failure. Orthopedics 25(2):183–185PubMedCrossRef
18.
Zurück zum Zitat Shu WB, Zhang XB, Lu HY, Wang HH, Lan GH (2018) Comparison of effects of four treatment methods for unstable intertrochanteric fractures: a network meta-analysis. Int J Surg 60:173–181PubMedCrossRef Shu WB, Zhang XB, Lu HY, Wang HH, Lan GH (2018) Comparison of effects of four treatment methods for unstable intertrochanteric fractures: a network meta-analysis. Int J Surg 60:173–181PubMedCrossRef
19.
Zurück zum Zitat Ehlinger M, Niglis L, Favreau H, Kuntz S, Bierry G, Adam P, Bonnomet F (2018) Vascular complication after percutaneous femoral cerclage wire. Orthop Traumatol Surg Res 104(3):377–381PubMedCrossRef Ehlinger M, Niglis L, Favreau H, Kuntz S, Bierry G, Adam P, Bonnomet F (2018) Vascular complication after percutaneous femoral cerclage wire. Orthop Traumatol Surg Res 104(3):377–381PubMedCrossRef
20.
Zurück zum Zitat Mehta V, Finn HA (2005) Femoral artery and vein injury after cerclage wiring of the femur: a case report. J Arthroplast 20:811–814CrossRef Mehta V, Finn HA (2005) Femoral artery and vein injury after cerclage wiring of the femur: a case report. J Arthroplast 20:811–814CrossRef
21.
Zurück zum Zitat Aleto T, Ritter MA, Berend ME (2008) Case report: superficial femoral artery injury resulting from cerclage wiring during revision THA. Clin Orthop Relat Res 466:749–753PubMedPubMedCentralCrossRef Aleto T, Ritter MA, Berend ME (2008) Case report: superficial femoral artery injury resulting from cerclage wiring during revision THA. Clin Orthop Relat Res 466:749–753PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Friederichs J, von Rüden C, Hierholzer C, Bühren V (2015) Antegrade femoral intramedullary nailing in a lateral position. Unfallchirurg 118(4):295–301PubMedCrossRef Friederichs J, von Rüden C, Hierholzer C, Bühren V (2015) Antegrade femoral intramedullary nailing in a lateral position. Unfallchirurg 118(4):295–301PubMedCrossRef
23.
Zurück zum Zitat Binkley JM, Stratford PW, Lott SA, Riddle DL (1999) The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Phys Ther 79:371–383PubMed Binkley JM, Stratford PW, Lott SA, Riddle DL (1999) The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Phys Ther 79:371–383PubMed
24.
Zurück zum Zitat Fisher JS, Kazam JJ, Fufa D, Bartolotta RJ (2019) Radiologic evaluation of fracture healing. Skelet Radiol 48(3):349–361CrossRef Fisher JS, Kazam JJ, Fufa D, Bartolotta RJ (2019) Radiologic evaluation of fracture healing. Skelet Radiol 48(3):349–361CrossRef
25.
Zurück zum Zitat Queally J, Harris E, Handoll H, Parker M (2014) Intramedullary nails for extracapsular hip fractures in adults. Cochrane Database Syst Rev 12(9):CD004961 Queally J, Harris E, Handoll H, Parker M (2014) Intramedullary nails for extracapsular hip fractures in adults. Cochrane Database Syst Rev 12(9):CD004961
26.
Zurück zum Zitat Codesido P, Mejía A, Riego J, Ojeda-Thies C (2017) Subtrochanteric fractures in elderly people treated with intramedullary fixation: quality of life and complications following open reduction and cerclage wiring versus closed reduction. Arch Orthop Trauma Surg 137(8):1077–1085PubMedCrossRef Codesido P, Mejía A, Riego J, Ojeda-Thies C (2017) Subtrochanteric fractures in elderly people treated with intramedullary fixation: quality of life and complications following open reduction and cerclage wiring versus closed reduction. Arch Orthop Trauma Surg 137(8):1077–1085PubMedCrossRef
27.
Zurück zum Zitat Hollensteiner M, Sandriesser S, Bliven E, von Rüden C, Augat P (2019) Biomechanics of osteoporotic fracture fixation. Curr Osteoporos Rep 17(6):363–374PubMedPubMedCentralCrossRef Hollensteiner M, Sandriesser S, Bliven E, von Rüden C, Augat P (2019) Biomechanics of osteoporotic fracture fixation. Curr Osteoporos Rep 17(6):363–374PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Falkensammer ML, Benninger E, Meier C (2016) Reduction techniques for trochanteric and subtrochanteric fractures of the femur: a practical guide. Acta Chir Orthop Traumatol Cechoslov 83(5):300–310 Falkensammer ML, Benninger E, Meier C (2016) Reduction techniques for trochanteric and subtrochanteric fractures of the femur: a practical guide. Acta Chir Orthop Traumatol Cechoslov 83(5):300–310
29.
Zurück zum Zitat Mahomed N, Harrington I, Kellam J, Maistrelli G, Hearn T, Vroemen J (1994) Biomechanical analysis of the gamma nail and sliding hip screw. Clin Orthop Relat Res 304:280–288 Mahomed N, Harrington I, Kellam J, Maistrelli G, Hearn T, Vroemen J (1994) Biomechanical analysis of the gamma nail and sliding hip screw. Clin Orthop Relat Res 304:280–288
30.
31.
Zurück zum Zitat Rosenblum SF, Zuckerman JD, Kummer FJ, Tam BS (1992) A biomechanical evaluation of the gamma nail. J Bone Joint Surg (Br) 74(3):352–357CrossRef Rosenblum SF, Zuckerman JD, Kummer FJ, Tam BS (1992) A biomechanical evaluation of the gamma nail. J Bone Joint Surg (Br) 74(3):352–357CrossRef
32.
Zurück zum Zitat Mingo-Robinet J, Torres-Torres M, Moreno-Barrero M, Alonso JA, García-González S (2015) Minimally invasive clamp assisted reduction and cephalomedullary nailing without cerclage cables for subtrochanteric femur fractures in the elderly: surgical technique and results. Injury 46(6):1036–1041PubMedCrossRef Mingo-Robinet J, Torres-Torres M, Moreno-Barrero M, Alonso JA, García-González S (2015) Minimally invasive clamp assisted reduction and cephalomedullary nailing without cerclage cables for subtrochanteric femur fractures in the elderly: surgical technique and results. Injury 46(6):1036–1041PubMedCrossRef
33.
Zurück zum Zitat Kilinc BE, Oc Y, Kara A, Erturer RE (2018) The effect of the cerclage wire in the treatment of subtrochanteric femur fracture with the long proximal femoral nail: a review of 52 cases. Int J Surg 56:250–255PubMedCrossRef Kilinc BE, Oc Y, Kara A, Erturer RE (2018) The effect of the cerclage wire in the treatment of subtrochanteric femur fracture with the long proximal femoral nail: a review of 52 cases. Int J Surg 56:250–255PubMedCrossRef
34.
Zurück zum Zitat Müller T, Topp T, Kühne CA, Gebhart G, Ruchholtz S, Zettl R (2011) The benefit of wire cerclage stabilisation of the medial hinge in intramedullary nailing for the treatment of subtrochanteric femoral fractures: a biomechanical study. Int Orthop 35:1237–1243PubMedPubMedCentralCrossRef Müller T, Topp T, Kühne CA, Gebhart G, Ruchholtz S, Zettl R (2011) The benefit of wire cerclage stabilisation of the medial hinge in intramedullary nailing for the treatment of subtrochanteric femoral fractures: a biomechanical study. Int Orthop 35:1237–1243PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Eberle S, Bauer C, Gerber C, von Oldenburg G, Augat P (2010) The stability of a hip fracture determines the fatigue of an intramedullary nail. Proc Inst Mech Eng H 224(4):577–584PubMedCrossRef Eberle S, Bauer C, Gerber C, von Oldenburg G, Augat P (2010) The stability of a hip fracture determines the fatigue of an intramedullary nail. Proc Inst Mech Eng H 224(4):577–584PubMedCrossRef
36.
Zurück zum Zitat Hoskins W, Bingham R, Joseph S, Liew D, Love D, Bucknill A, Oppy A, Griffin X (2015) Subtrochanteric fracture: the effect of cerclage wire on fracture reduction and outcome. Injury 46(10):1992–1995PubMedCrossRef Hoskins W, Bingham R, Joseph S, Liew D, Love D, Bucknill A, Oppy A, Griffin X (2015) Subtrochanteric fracture: the effect of cerclage wire on fracture reduction and outcome. Injury 46(10):1992–1995PubMedCrossRef
38.
Zurück zum Zitat Tomas J, Teixidor J, Batalla L, Pacha D, Cortina J (2013) Subtrochanteric fractures: treatment with cerclage wire and long intramedullary nail. J Orthop Trauma 27:e157–e160PubMedCrossRef Tomas J, Teixidor J, Batalla L, Pacha D, Cortina J (2013) Subtrochanteric fractures: treatment with cerclage wire and long intramedullary nail. J Orthop Trauma 27:e157–e160PubMedCrossRef
39.
Zurück zum Zitat Persiani P, Noia G, de Cristo C, Graci J, Gurzì MD, Villani C (2015) A study of 44 patients with subtrochanteric fractures treated using long nail and cerclage cables. Musculoskelet Surg 99(3):225–230PubMedCrossRef Persiani P, Noia G, de Cristo C, Graci J, Gurzì MD, Villani C (2015) A study of 44 patients with subtrochanteric fractures treated using long nail and cerclage cables. Musculoskelet Surg 99(3):225–230PubMedCrossRef
Metadaten
Titel
Does auxiliary cerclage wiring provide intrinsic stability in cephalomedullary nailing of trochanteric and subtrochanteric fractures?
verfasst von
Julia Rehme
Alexander Woltmann
Andreas Brand
Christian von Rüden
Publikationsdatum
12.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
International Orthopaedics / Ausgabe 5/2021
Print ISSN: 0341-2695
Elektronische ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-020-04795-4

Weitere Artikel der Ausgabe 5/2021

International Orthopaedics 5/2021 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.