Skip to main content
Log in

Adjunctive Thermoprotection During Percutaneous Thermal Ablation Procedures: Review of Current Techniques

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Although rare, unintended thermal injury to organs surrounding the ablation zone can lead to severe complications. Over the past 15 years, different protective methods have been developed to limit risk of complications, and expand indications to include more challenging lesions in various locations including liver, kidney, lung and bone. The most frequently used techniques include hydrodissection, carbodissection, balloon interposition and probe torqueing. In most cases, tumours can be physically separated from sensitive structures, reducing risk of thermal injury. Endoluminal cooling/warming is an alternative option for complex ablations close to the ureter or major bile ducts. Different techniques may be combined to achieve successful protection in locations with complex anatomy. The purpose of this review is to provide an overview of available protective measures and discuss respective advantages/drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. de Baère T, Aupérin A, Deschamps F, Chevallier P, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol. 2015;26(5):987–91. https://doi.org/10.1093/annonc/mdv037.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meijerink MR, Puijk RS, van Tilborg AAJM, Henningsen KH, et al. Radiofrequency and microwave ablation compared to systemic chemotherapy and to partial hepatectomy in the treatment of colorectal liver metastases: a systematic review and meta-analysis. Cardiovasc Interv Radiol. 2018. https://doi.org/10.1007/s00270-018-1959-3.

    Article  Google Scholar 

  3. Thompson RH, Atwell T, Schmit G, Lohse CM, et al. Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur Urol. 2015;67(2):252–9. https://doi.org/10.1016/j.eururo.2014.07.021.

    Article  Google Scholar 

  4. Garnon J, Koch G, Caudrelier J, Tsoumakidou G, et al. Expanding the borders: image- guided procedures for the treatment of musculoskeletal tumors. Diagn Interv Imaging. 2017;98(9):635–44. https://doi.org/10.1016/j.diii.2017.07.009.

    Article  CAS  PubMed  Google Scholar 

  5. Welch BT, Callstrom MR, Carpenter PC, Wass CT, et al. A single-institution experience in image-guided thermal ablation of adrenal gland metastases. J Vasc Interv Radiol. 2014;25(4):593–8. https://doi.org/10.1016/j.jvir.2013.12.013.

    Article  PubMed  Google Scholar 

  6. Palussière J, Canella M, Cornelis F, Catena V, et al. Retrospective review of thoracic neural damage during lung ablation—what the interventional radiologist needs to know about neural thoracic anatomy. Cardiovasc Interv Radiol. 2013;36(6):1602–13. https://doi.org/10.1007/s00270-013-0597-z.

    Article  Google Scholar 

  7. Jeong YS, Kim SH, Lee JM, Lee JY, et al. Gastrointestinal tract complications after hepatic radiofrequency ablation: CT prediction for major complications. Abdom Radiol (NY). 2018;43(3):583–92. https://doi.org/10.1007/s00261-017-1239-8.

    Article  Google Scholar 

  8. Kim HJ, Park BK, Park JJ, Kim CK. CT-guided radiofrequency ablation of T1a renal cell carcinoma in Korea: mid-term outcomes. Korean J Radiol. 2016;17(5):763–70. https://doi.org/10.3348/kjr.2016.17.5.763.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goldberg SN, Ahmed M, Gazelle GS, Kruskal JB, et al. Radio-frequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation-phantom and porcine liver study. Radiology. 2001;219(1):157–65.

    Article  CAS  Google Scholar 

  10. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, et al. Radiofrequency ablation of renal cell carcinoma: part 1. Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol. 2005;185(1):64–71.

    Article  Google Scholar 

  11. Tsoumakidou G, Buy X, Garnon J, Enescu J, et al. Percutaneous thermal ablation: how to protect the surrounding organs. Tech Vasc Interv Radiol. 2011;14(3):170–6. https://doi.org/10.1053/j.tvir.2011.02.009.

    Article  PubMed  Google Scholar 

  12. Pereira PL, Masala S. Cardiovascular and Interventional Radiological Society of Europe (CIRSE), Standards of practice: guidelines for thermal ablation of primary and secondary lung tumors. Cardiovasc Interv Radiol. 2012;35(2):247–54. https://doi.org/10.1007/s00270-012-0340-1.

    Article  Google Scholar 

  13. Callstrom MR, York JD, Gaba RC, Gemmete JJ, et al. Research reporting standards for image-guided ablation of bone and soft tissue tumors. J Vasc Interv Radiol. 2009;20(12):1527–40. https://doi.org/10.1016/j.jvir.2009.08.009.

    Article  PubMed  Google Scholar 

  14. Gervais DA, Goldberg SN, Brown DB, Soulen MC, et al. Society of Interventional Radiology position statement on percutaneous radiofrequency ablation for the treatment of liver tumors. J Vasc Interv Radiol. 2009;20(1):3–8. https://doi.org/10.1016/j.jvir.2008.09.007.

    Article  PubMed  Google Scholar 

  15. de Kerviler E, Guermazi A, Gossot D, Cazals-Hatem D, et al. Use of an abdominal compression device for CT-guided biopsy of enlarged abdominal or pelvic lymph nodes. J Vasc Interv Radiol. 1998;9(2):353–7.

    Article  Google Scholar 

  16. Dachman AH. A biopsy compression device for use in cross-sectional or fluoroscopic imaging. AJR Am J Roentgenol. 1998;171(3):703–5.

    Article  CAS  Google Scholar 

  17. Tuncali K, Morrison PR, Tatli S, Silverman SG. MRI-guided percutaneous cryoablation of renal tumors: use of external manual displacement of adjacent bowel loops. Eur J Radiol. 2006;59(2):198–202.

    Article  Google Scholar 

  18. Ogawa T, Kawamoto H, Kobayashi Y, Nakamura S, et al. Prevention of biliary complication in radiofrequency ablation for hepatocellular carcinoma-Cooling effect by endoscopic nasobiliary drainage tube. Eur J Radiol. 2010;73(2):385–90. https://doi.org/10.1016/j.ejrad.2008.10.021.

    Article  PubMed  Google Scholar 

  19. Felker ER, Lee-Felker SA, Ajwichai K, Tan N, et al. Radiofrequency ablation of central liver tumors reduces biliary injuries. AJR Am J Roentgenol. 2015;204(6):1329–35. https://doi.org/10.2214/AJR.14.13788.

    Article  PubMed  Google Scholar 

  20. Künzli BM, Abitabile P, Maurer CA. Radiofrequency ablation of liver tumors: Actual limitations and potential solutions in the future. World J Hepatol. 2011;3(1):8–14. https://doi.org/10.4254/wjh.v3.i1.8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ohnishi T, Yasuda I, Nishigaki Y, Hayashi H, et al. Intraductal chilled saline perfusion to prevent bile duct injury during percutaneous radiofrequency ablation for hepatocellular carcinoma. J Gastroenterol Hepatol. 2008;23(8 Pt 2):e410–5.

    Article  Google Scholar 

  22. Li X, Yu J, Liang P, Yu X, et al. Ultrasound-guided percutaneous microwave ablation assisted by three-dimensional visualization operative treatment planning system and percutaneous transhepatic cholangial drainage with intraductal chilled saline perfusion for larger hepatic hilum hepatocellular (D ≥ 3 cm): preliminary results. Oncotarget. 2017;8(45):79742–9. https://doi.org/10.18632/oncotarget.19275.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Raman SS, Aziz D, Chang X, Ye M, et al. Minimizing central bile duct injury during radiofrequency ablation: use of intraductal chilled saline perfusion–initial observations from a study in pigs. Radiology. 2004;232(1):154–9.

    Article  Google Scholar 

  24. Jersenius U, Arvidsson D, Lindholm J, Anttila S, et al. Radiofrequency ablation in the liver close to the bile ducts: can intraductal cooling offer protection? Surg Endosc. 2005;19(4):546–50.

    Article  CAS  Google Scholar 

  25. Janzen NK, Perry KT, Han KR, Kristo B, et al. The effects of intentional cryoablation and radio frequency ablation of renal tissue involving the collecting system in a porcine model. J Urol. 2005;173(4):1368–74.

    Article  Google Scholar 

  26. Johnson DB, Saboorian MH, Duchene DA, Ogan K, et al. Nephrectomy after radiofrequency ablation-induced ureteropelvic junction obstruction: potential complication and long-term assessment of ablation adequacy. Urology. 2003;62(2):351–2.

    Article  Google Scholar 

  27. Chen SH, Mouraviev V, Raj GV, Marguet CG, et al. Ureteropelvic junction obliteration resulting in nephrectomy after radiofrequency ablation of small renal cell carcinoma. Urology. 2007;69(5):982.e3–5.

    Article  Google Scholar 

  28. West B, Keheila M, Smith JC, Erskine A, et al. Efficacy of antegrade and retrograde warm saline pyeloperfusion during renal cryoablation for ureteral preservation. Turk J Urol. 2018;44(2):142–7. https://doi.org/10.5152/tud.2017.44380.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wah TM, Koenig P, Irving HC, Gervais DA, et al. Radiofrequency ablation of a central renal tumor: protection of the collecting system with a retrograde cold dextrose pyeloperfusion technique. J Vasc Interv Radiol. 2005;16(11):1551–5.

    Article  Google Scholar 

  30. Hwang SI, Cho JY, Kim SH, Jun SR, et al. Protection of the renal collecting system during radiofrequency ablation with antegrade cold dextrose infusion. Radiology. 2010;256(3):759–66. https://doi.org/10.1148/radiol.10091220.

    Article  PubMed  Google Scholar 

  31. Isfort P, Penzkofer T, Tanaka T, Bruners P, et al. Efficacy of antegrade pyeloperfusion to protect the renal pelvis in kidney microwave ablation using an in vivo swine model. Invest Radiol. 2013;48(12):863–8. https://doi.org/10.1097/RLI.0b013e3182a2af82.

    Article  PubMed  Google Scholar 

  32. Cantwell CP, Wah TM, Gervais DA, Eisner BH, et al. Protecting the ureter during radiofrequency ablation of renal cell cancer: a pilot study of retrograde pyeloperfusion with cooled dextrose 5% in water. J Vasc Interv Radiol. 2008;19(7):1034–40. https://doi.org/10.1016/j.jvir.2008.04.005.

    Article  PubMed  Google Scholar 

  33. Mauri G, Nicosia L, Varano GM, Bonomo G, et al. Tips and tricks for a safe and effective image-guided percutaneous renal tumour ablation. Insights Imaging. 2017;8(3):357–63. https://doi.org/10.1007/s13244-017-0555-4.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eswara JR, Gervais DA, Mueller PR, Arellano RS, et al. Renal radiofrequency ablation with pyeloperfusion. Int J Urol. 2015;22(1):131–2. https://doi.org/10.1111/iju.12625.

    Article  PubMed  Google Scholar 

  35. Dai Y, Covarrubias D, Uppot R, Arellano RS. Image-guided percutaneous radiofrequency ablation of central renal cell carcinoma: assessment of clinical efficacy and safety in 31 tumors. J Vasc Interv Radiol. 2017;28(12):1643–50. https://doi.org/10.1016/j.jvir.2017.05.006.

    Article  Google Scholar 

  36. Breen DJ, King AJ, Patel N, Lockyer R, Hayes M. Image-guided cryoablation for sporadic renal cell carcinoma: three- and 5-year outcomes in 220 patients with biopsy-proven renal cell carcinoma. Radiology. 2018;7:180249. https://doi.org/10.1148/radiol.2018180249.

    Article  Google Scholar 

  37. Butros SR, DelCarmen MG, Uppot RN, Arellano RS. Image-guided percutaneous thermal ablation of metastatic pelvic tumor from gynecologic malignancies. Obstet Gynecol. 2014;123(3):500–5. https://doi.org/10.1097/AOG.0000000000000133.

    Article  PubMed  Google Scholar 

  38. Saliken JC, Donnelly BJ, Rewcastle JC. The evolution and state of modern technology for prostate cryosurgery. Urology. 2002;60(2 Suppl 1):26–33.

    Article  Google Scholar 

  39. Barqawi AB, Huebner E, Krughoff K, O’Donnell CI. Prospective outcome analysis of the safety and efficacy of partial and complete cryoablation in organ-confined prostate cancer. Urology. 2018;112:126–31. https://doi.org/10.1016/j.urology.2017.10.029.

    Article  PubMed  Google Scholar 

  40. Gangi A, Tsoumakidou G, Abdelli O, Buy X, et al. Percutaneous MR-guided cryoablation of prostate cancer: initial experience. Eur Radiol. 2012;22(8):1829–35. https://doi.org/10.1007/s00330-012-2411-8.

    Article  PubMed  Google Scholar 

  41. Hiraki T, Yasui K, Mimura H, Gobara H, et al. Radiofrequency ablation of metastatic mediastinal lymph nodes during cooling and temperature monitoring of the tracheal mucosa to prevent thermal tracheal damage: initial experience. Radiology. 2005;237(3):1068–74.

    Article  Google Scholar 

  42. Sohara H, Satake S, Takeda H, Yamaguchi Y, et al. Prevalence of esophageal ulceration after atrial fibrillation ablation with the hot balloon ablation catheter: what is the value of esophageal cooling? J Cardiovasc Electrophysiol. 2014;25(7):686–92. https://doi.org/10.1111/jce.12394.

    Article  PubMed  Google Scholar 

  43. Levit E, Bruners P, Günther RW, Mahnken AH. Bile aspiration and hydrodissection to prevent complications in hepatic RFA close to the gallbladder. Acta Radiol. 2012;53(9):1045–8. https://doi.org/10.1258/ar.2012.120190.

    Article  PubMed  Google Scholar 

  44. Froemming A, Atwell T, Farrell M, Callstrom M, et al. Probe retraction during renal tumor cryoablation: a technique to minimize direct ureteral injury. J Vasc Interv Radiol. 2010;21(1):148–51. https://doi.org/10.1016/j.jvir.2009.09.014.

    Article  PubMed  Google Scholar 

  45. Garnon J, Koch G, Ramamurthy N, Caudrelier J, et al. A pitfall of cryoadhesional displacement during cryoablation of lung metastasis to require modification of triple-freeze protocol. Cardiovasc Interv Radiol. 2016;39(6):960–4. https://doi.org/10.1007/s00270-016-1312-7.

    Article  Google Scholar 

  46. Kambadakone A, Baliyan V, Kordbacheh H, Uppot RN, et al. Imaging guided percutaneous interventions in hepatic dome lesions: tips and tricks. World J Hepatol. 2017;9(19):840–9. https://doi.org/10.4254/wjh.v9.i19.840.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ginat DT, Saad W, Davies M, Walman D, et al. Bowel displacement for CT-guided tumor radiofrequency ablation: techniques and anatomic considerations. J Endourol. 2009;23(8):1259–64. https://doi.org/10.1089/end.2008.0668.

    Article  PubMed  Google Scholar 

  48. Ginat DT, Saad WE. Bowel displacement and protection techniques during percutaneous renal tumor thermal ablation. Tech Vasc Interv Radiol. 2010;13(2):66–74. https://doi.org/10.1053/j.tvir.2010.02.002.

    Article  PubMed  Google Scholar 

  49. Alexander ES, Hankins CA, Machan JT, Healey TT, et al. Rib fractures after percutaneous radiofrequency and microwave ablation of lung tumors: incidence and relevance. Radiology. 2013;266(3):971–8. https://doi.org/10.1148/radiol.12120933.

    Article  PubMed  Google Scholar 

  50. Alberti N, Ferretti G, Buy X, Desjardin M, et al. Diaphragmatic hernia after lung percutaneous radiofrequency ablation: incidence and risk factors. Cardiovasc Interv Radiol. 2014;37(6):1516–22. https://doi.org/10.1007/s00270-014-0854-9.

    Article  Google Scholar 

  51. Farrell MA, Charboneau JW, Callstrom MR, Reading CC, et al. Paranephric water instillation: a technique to prevent bowel injury during percutaneous renal radiofrequency ablation. AJR Am J Roentgenol. 2003;181(5):1315–7.

    Article  CAS  Google Scholar 

  52. Arellano RS, Garcia RG, Gervais DA, Mueller PR. Percutaneous CT-guided radiofrequency ablation of renal cell carcinoma: efficacy of organ displacement by injection of 5% dextrose in water into the retroperitoneum. AJR Am J Roentgenol. 2009;193(6):1686–90. https://doi.org/10.2214/AJR.09.2904.

    Article  PubMed  Google Scholar 

  53. Liu CH, Yu CY, Chang WC, Dai MS, et al. Computed tomographic-guided percutaneous radiofrequency ablation with hydrodissection of hepatic malignancies in the subcapsular location: evaluation of safety and technical efficacy. J Chin Med Assoc. 2016;79(2):93–100. https://doi.org/10.1016/j.jcma.2015.07.013.

    Article  CAS  PubMed  Google Scholar 

  54. Bhagavatula SK, Chick JF, Chauhan NR, Shyn PB. Artificial ascites and pneumoperitoneum to facilitate thermal ablation of liver tumors: a pictorial essay. Abdom Radiol (NY). 2017;42(2):620–30. https://doi.org/10.1007/s00261-016-0910-9.

    Article  Google Scholar 

  55. Cheng Z, Yu X, Han Z, Liu F, et al. Ultrasound-guided hydrodissection for assisting percutaneous microwave ablation of renal cell carcinomas adjacent to intestinal tracts: a preliminary clinical study. Int J Hyperth. 2018;34(3):315–20. https://doi.org/10.1080/02656736.2017.1338362.

    Article  Google Scholar 

  56. Georgiades CS, Rodriguez R. Efficacy and safety of percutaneous cryoablation for stage 1A/B renal cell carcinoma: results of a prospective, single-arm, 5-year study. Cardiovasc Interv Radiol. 2014;37(6):1494–9. https://doi.org/10.1007/s00270-013-0831-8.

    Article  Google Scholar 

  57. Tsoumakidou G, Koch G, Caudrelier J, Garnon J, et al. Image-guided spinal ablation: a review. Cardiovasc Interv Radiol. 2016;39(9):1229–38. https://doi.org/10.1007/s00270-016-1402-6.

    Article  Google Scholar 

  58. Asvadi NH, Anvari A, Uppot RN, Thabet A, et al. CT-guided percutaneous microwave ablation of tumors in the hepatic dome: assessment of efficacy and safety. J Vasc Interv Radiol. 2016;27(4):496–502. https://doi.org/10.1016/j.jvir.2016.01.010 (quiz 503).

    Article  PubMed  Google Scholar 

  59. Tsoumakidou G, Thénint MA, Garnon J, Buy X, et al. Percutaneous image-guided laser photocoagulation of spinal osteoid osteoma: a single-institution series. Radiology. 2016;278(3):936–43. https://doi.org/10.1148/radiol.2015150491.

    Article  PubMed  Google Scholar 

  60. Garnon J, Koch G, Caudrelier J, Ramamurthy N, et al. Percutaneous image-guided cryoablation of challenging mediastinal lesions using large-volume hydrodissection: technical considerations and outcomes. Cardiovasc Interv Radiol. 2016;39(11):1636–43. https://doi.org/10.1007/s00270-016-1396-0.

    Article  Google Scholar 

  61. Jiang L, Krishnasamy V, Varano GM, Wood BJ. Hyponatremia following high-volume D5W hydrodissection during thermal ablation. Cardiovasc Interv Radiol. 2016;39:146–9.

    Article  Google Scholar 

  62. Cazzato RL, Garnon J, Shaygi B, Tsoumakidou G, et al. How to perform a routine cryoablation under MRI guidance. Top Magn Reson Imaging. 2018;27(1):33–8. https://doi.org/10.1097/RMR.0000000000000158.

    Article  PubMed  Google Scholar 

  63. DeBenedectis CM, Beland MD, Dupuy DE, Mayo-Smith WW. Utility of iodinated contrast medium in hydrodissection fluid when performing renal tumor ablation. J Vasc Interv Radiol. 2010;21(5):745–7. https://doi.org/10.1016/j.jvir.2010.01.022.

    Article  PubMed  Google Scholar 

  64. Campbell C, Lubner MG, Hinshaw JL, Muñoz del Rio A, et al. Contrast media-doped hydrodissection during thermal ablation: optimizing contrast media concentration for improved visibility on CT images. AJR Am J Roentgenol. 2012;199(3):677–82. https://doi.org/10.2214/ajr.11.7999.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Asvadi NH, Arellano RS. Hydrodissection-assisted image-guided percutaneous biopsy of abdominal and pelvic lesions: experience with seven patients. AJR Am J Roentgenol. 2015;204(4):865–7. https://doi.org/10.2214/AJR.14.13040.

    Article  PubMed  Google Scholar 

  66. Kurup AN, Schmit GD, Morris JM, Atwell TD, et al. Avoiding complications in bone and soft tissue ablation. Cardiovasc Interv Radiol. 2017;40(2):166–76. https://doi.org/10.1007/s00270-016-1487-y.

    Article  Google Scholar 

  67. Lee SJ, Choyke LT, Locklin JK, Wood BJ. Use of hydrodissection to prevent nerve and muscular damage during radiofrequency ablation of kidney tumors. J Vasc Interv Radiol. 2006;17(12):1967–9.

    Article  Google Scholar 

  68. Khan F, Ho AM, Jamal JE, Gershbaum MD, et al. Long-term outcomes after percutaneous renal cryoablation performed with adjunctive techniques. Clin Imaging. 2017;12(50):62–7. https://doi.org/10.1016/j.clinimag.2017.12.003.

    Article  Google Scholar 

  69. Kang TW, Rhim H, Lee MW, Kim YS, et al. Radiofrequency ablation for hepatocellular carcinoma abutting the diaphragm: comparison of effects of thermal protection and therapeutic efficacy. AJR Am J Roentgenol. 2011;196(4):907–13. https://doi.org/10.2214/AJR.10.4584.

    Article  PubMed  Google Scholar 

  70. Kang TW, Lee MW, Hye MJ, Song KD, et al. Percutaneous radiofrequency ablation of hepatic tumours: factors affecting technical failure of artificial ascites formation using an angiosheath. Clin Radiol. 2014;69(12):1249–58. https://doi.org/10.1016/j.crad.2014.07.012.

    Article  CAS  PubMed  Google Scholar 

  71. Kariya S, Tanigawa N, Kojima H, Komemushi A, et al. Radiofrequency ablation combined with CO2 injection for treatment of retroperitoneal tumor: protecting surrounding organs against thermal injury. AJR Am J Roentgenol. 2005;185(4):890–3.

    Article  Google Scholar 

  72. Leroy JE, Le Péchon JC, Delafosse B, Fischler M. Is it necessary to revalue the risk of a gas embolism complicating an intervention with carbon dioxide insufflation? Ann Fr Anesth Reanim. 2007;26(5):459–63.

    Article  Google Scholar 

  73. Buy X, Tok C-H, Szwarc D, et al. Thermal protection during percutaneous thermal ablation procedures: interest of carbon dioxide dissection and temperature monitoring. Cardiovasc Interv Radiol. 2009;32:529–34. https://doi.org/10.1007/s00270-009-9524-8.

    Article  Google Scholar 

  74. Favelier S, Guiu S, Cherblanc V, Cercueil JP, et al. Transthoracic adrenal biopsy procedure using artificial carbon dioxide pneumothorax as outpatient procedure. Cardiovasc Interv Radiol. 2013;36(4):1184–7. https://doi.org/10.1007/s00270-012-0508-8 Epub 2012 Nov 14.

    Article  Google Scholar 

  75. Garnon J, Cazzato RL, Koch G, Uri IF, et al. Trans-rectal ultrasound-guided autologous blood injection in the interprostatorectal space prior to percutaneous MRI-guided cryoablation of the prostate. Cardiovasc Interv Radiol. 2018;41(4):653–9. https://doi.org/10.1007/s00270-017-1853-4.

    Article  Google Scholar 

  76. Majdalany BS, Willatt J, Chick JFB, Srinivasa RN, et al. Fibrillar collagen injection for organ protection during thermal ablation of hepatic malignancies. Diagn Interv Radiol. 2017;23(5):381–4. https://doi.org/10.5152/dir.2017.17120.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hasegawa T, Takaki H, Miyagi H, Nakatsuka A, et al. Hyaluronic acid gel injection to prevent thermal injury of adjacent gastrointestinal tract during percutaneous liver radiofrequency ablation. Cardiovasc Interv Radiol. 2013;36(4):1144–6. https://doi.org/10.1007/s00270-013-0546-x.

    Article  Google Scholar 

  78. Johnson A, Sprangers A, Cassidy P, Heyrman S, et al. Design and validation of a thermoreversible material for percutaneous tissue hydrodissection. J Biomed Mater Res B Appl Biomater. 2013;101(8):1400–9. https://doi.org/10.1002/jbm.b.32959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Johnson A, Brace C. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials. Int J Hyperth. 2015;31(5):551–9. https://doi.org/10.3109/02656736.2015.1037799.

    Article  CAS  Google Scholar 

  80. Zhang LL, Xia GM, Liu YJ, Dou R, et al. Effect of a poloxamer 407-based thermosensitive gel on minimization of thermal injury to diaphragm during microwave ablation of the liver. World J Gastroenterol. 2017;23(12):2141–8. https://doi.org/10.3748/wjg.v23.i12.2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moreland AJ, Lubner MG, Ziemlewicz TJ, Kitchin DR, et al. Evaluation of a thermoprotective gel for hydrodissection during percutaneous microwave ablation: in vivo results. Cardiovasc Interv Radiol. 2015;38(3):722–30. https://doi.org/10.1007/s00270-014-1008-9.

    Article  Google Scholar 

  82. Yamakado K, Nakatsuka A, Akeboshi M, Takeda K. Percutaneous radiofrequency ablation of liver neoplasms adjacent to the gastrointestinal tract after balloon catheter interposition. J Vasc Interv Radiol. 2003;14(9 Pt 1):1183–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Garnon.

Ethics declarations

Conflict of interest

Julien Garnon is a proctor for BTG-Galil and has received fees for oral presentations for Toshiba and Medtronic. Roberto Luigi Cazzato has received fees for oral presentations for Medtronic. Guillaume Koch is a proctor for BTG-Galil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnon, J., Cazzato, R.L., Caudrelier, J. et al. Adjunctive Thermoprotection During Percutaneous Thermal Ablation Procedures: Review of Current Techniques. Cardiovasc Intervent Radiol 42, 344–357 (2019). https://doi.org/10.1007/s00270-018-2089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-018-2089-7

Keywords

Navigation