Skip to main content
Log in

Study of the auditory tube by ventilation scintigraphy with technetium-99m

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The two essential regulating mechanisms of the middle ear pressure are the trans-mucosal gas exchange in the middle ear and the ventilation function of the eustachian tube (ET). The physiological mechanism of these both functions is not yet clear. The purpose of this study was to evaluate the role of the ET pressure equilibrium function by ventilation scintigraphy with technetium-99m. The rabbit animal model in vivo was used to study the presence and role of the ventilation of the tympanic cavity via auditory tube. The obtained results did not show any ventilation function of the ET despite active opening by muscle movement. In our experience, ventilation scintigraphy with technetium-99m is not a reliable method to study the auditory tube pressure equilibrium function in physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ars B, Dirckx JJ (2003) Tubomanometry. In: Ars B (ed) Fibrocartilaginous eustachian tube—middle ear cleft. Kugler Publications, The Hague, The Netherlands, pp 151–158

    Google Scholar 

  2. Brenner W, Bohuslavizki KH, Kroker B, et al (1997) Ventilation scintigraphy of the middle ear. J Nucl Med 38:66–70

    PubMed  Google Scholar 

  3. Celen Z, Kanlykama M, Yildrimin Bayazit A, Semih Mumbuc B, Zincirkeser S, Özbay E (1999) Scintigraphic evaluation of the eustachian tube function. Rev Laryngol Otol Rhinol 120:123–125

    Google Scholar 

  4. Elner A (1977) Quantitative studies of gas absorption from the normal middle ear. Acta Otolaryngol 83:25–28

    PubMed  Google Scholar 

  5. Estève D, Dubreuil Ch, Della Vedova Cl, Normand B, Lavieille JP, Martin Ch (2001) Physiologie et physiopathologie de la fonction d’ouverture de la trompe auditive: Apports de la Tubomanométrie. JF ORL 50:233–241

    Google Scholar 

  6. Grontved A, Krogh HJ, Christensen PH, et al (1989) Monitoring middle ear pressure by tympanometry. Acta Otolaryngol (Stockh) 108:101–106

    Google Scholar 

  7. Hergils L, Magnuson B (1987) Middle-ear pressure under basal conditions. Arch Otolaryngol Head Neck Surg 113:829–832

    PubMed  Google Scholar 

  8. Hergils L, Magnuson B (1988) Regulation of negative middle ear pressure without tubal opening. Arch Otolaryngol Head Neck Surg 114:1442–1444

    PubMed  Google Scholar 

  9. Hergils L, Magnuson B (1990) Human middle ear gas composition studied by mass spectrometry. Acta Otolaryngol (Stockh) 110:92–99

    Google Scholar 

  10. Hergils L, Magnuson B (1997) Middle ear gas composition in pathologic conditions: mass spectrometry in otitis media with effusion and atelectasis. Ann Otol Rhinol Laryngol 106:743–745

    PubMed  Google Scholar 

  11. Ishijima K, Sando I, Balaban CD, Miura M, Takasaki K (2002) Functional anatomy of levator veli palatini muscle and tensor veli palatini muscle in association with Eustachian tube cartilage. Ann Otol Rhinol Laryngol 111:530–536

    PubMed  Google Scholar 

  12. Kania R, Portier F, Lecain E, et al (2004) Experimental model for investigating trans-mucosal gas exchange in the middle ear of the rat. Acta Otolaryngol 124:408–410

    Article  PubMed  Google Scholar 

  13. Karasen RM, Varoglu E, Yildirim M, Eryilmaz K, Sütbeyaz Y, Sirin S (1999) Evaluation of Eustachian tube function with ventilation scintigraphy by using 133Xe gas. J Laryngol Otol 113:509–511

    PubMed  Google Scholar 

  14. Kirchner FR, Robinson R, Smith RF (1976) Study of the ventilation of middle ear using radioactive xenon. Ann Otol Rhinol Laryngol 85:165–168

    PubMed  Google Scholar 

  15. Kusakari J, Ohyama K, Inamura N, et al (1985) Gas analysis of the middle ear cavity in normal and pathological conditions. Auris Nasus Larynx 12(Suppl):S114–S116

    PubMed  Google Scholar 

  16. Luntz M, Sadé J (1993) Dynamic measurement of gas composition in the middle ear. I: Technique. Acta Otolaryngol (Stockh) 113:349–352

    Google Scholar 

  17. Magnuson B (1981) On the origin of the high negative pressure in the middle ear space. Am J Otolaryngol 2:1–12

    PubMed  Google Scholar 

  18. Martin Ch, Sterkers O, Robier A, Frachet B, Papax M, Chelikh L (1996) Physiologie de la trompe auditive. In: La trompe auditive. Rapp Soc Franç ORL Pathol Cerv Fac Arnette:68–87

  19. Martin Ch, Dubreuil Ch, Chelikh L, Esteve D, Merzougui N (1996) Tubomanométrie (TMM). In: La trompe auditive. Rapp Soc Franç ORL Pathol Cerv Fac Arnette, pp 229–237

  20. Matsumurta H (1955) Studies on the composition of air in the tympanic cavity. Arch Otolaryngol 61:220–222

    Google Scholar 

  21. Prades JM, Dumollard JM, Calloc’h F, Merzougui N, Veyret C, Martin C (1998) Descriptive anatomy of the human auditory tube. Surg Radiol Anat 20:335–340

    Article  PubMed  Google Scholar 

  22. Proctor B (1973) Anatomy of the eustachian tube. Arch Otolaryngol 97:2–8

    PubMed  Google Scholar 

  23. Sadé J, Ar A (1997) Middle ear and auditory tube: middle ear clearance, gas exchange, and pressure regulation. Otolaryngol Head Neck Surg 116:499–524

    Article  PubMed  Google Scholar 

  24. Sadé J, Ar A, Fuchs C (2003) Barotrauma vis-à-vis the “chronic otitis media syndrome”: two conditions with middle ear gas deficiency. Is secretory otitis media acontraindications to air travel? Ann Otol Rhinol Laryngol 112:230–235

    PubMed  Google Scholar 

  25. Sadé J, Luntz M (1992) Middle ear gases. Acta Otorhinolaryngol Belg 46:355–360

    PubMed  Google Scholar 

  26. Sadé J, Luntz M (1993) Dynamic measurement of gas composition in the middle ear. II: Steady state values. Acta Otolaryngol (Stockh) 113:353–357

    Google Scholar 

  27. Sadé J, Luntz M, Levy D (1995) Middle ear gas composition and middle ear aeration. Ann Otol Rhinol Laryngol 104:369–373

    PubMed  Google Scholar 

  28. Takeuchi K, Majima Y, Hirata K, Hattori M, Sakakura Y (1990) Quantitation of tubotympanal mucociliary clearance in otitis media with effusion. Ann Otol Rhinol Laryngol 99:211–214

    Google Scholar 

  29. Tideholm B, Carlborg B, Brattmo M (1999) Continuous long-term measurements of the middle ear pressure in subjects with symptoms of patulous eustachian tube. Acta Otolaryngol (Stockh) 119:809–815

    Google Scholar 

Download references

Acknowledgements

This study was performed as part of DEA “Biomorphologie Quantitative, Variabilité de la Forme Humaine”, Department of Anatomy, Faculty of Medicine, University Rene Descartes, Paris V, France. We thank Dr. Jean- François Pouget, Department of Radiology, Mutualist Clinic, St-Etienne, France and Mr. Yves Boyer from the Faculty of Medicine, University of Saint-Etienne, France, for their assistance in this study. The experiments described in this manuscript comply with the current laws of the country according to which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei P. Timoshenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timoshenko, A.P., Denis, C., Dubois, F. et al. Study of the auditory tube by ventilation scintigraphy with technetium-99m. Surg Radiol Anat 27, 482–486 (2005). https://doi.org/10.1007/s00276-005-0030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-005-0030-7

Keywords

Navigation