Skip to main content
Erschienen in: Annals of Hematology 3/2007

01.03.2007 | Review Article

Towards a new age in the treatment of multiple myeloma

verfasst von: Francesco A. Piazza, Carmela Gurrieri, Livio Trentin, Gianpietro Semenzato

Erschienen in: Annals of Hematology | Ausgabe 3/2007

Einloggen, um Zugang zu erhalten

Abstract

Multiple myeloma (MM) is an incurable disease characterized by the proliferation of end-stage B lymphocytes (plasma cells, PCs). As a consequence of myeloma growth in the bone marrow, a number of signaling pathways are activated that trigger malignant PC proliferation, escape from apoptosis, migration, and invasion. Thanks to new insights into the molecular pathogenesis of MM, novel approaches aimed at targeting these abnormally activated cascades have recently been developed and others are under study. These strategies include the inhibition of membrane receptor tyrosine kinases, inhibition of the proteasome/aggresome machinery, inhibition of histone deacetylases, inhibition of farnesyltransferases, targeting of molecular chaperones, and others. We will herein review and discuss these novel biological approaches with particular emphasis on those based on biochemical pathways which drive cell signaling. By providing the rationale for innovative therapeutic strategies, the above mechanisms represent targets for new compounds being tested in the management of this disease.
Literatur
1.
Zurück zum Zitat Ludwig H (2005) Advances in biology and treatment of multiple myeloma. Ann Oncol 16(Suppl 2):ii106–ii112PubMedCrossRef Ludwig H (2005) Advances in biology and treatment of multiple myeloma. Ann Oncol 16(Suppl 2):ii106–ii112PubMedCrossRef
2.
Zurück zum Zitat Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A et al (2003) Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 78(1):21–33PubMed Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A et al (2003) Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 78(1):21–33PubMed
3.
Zurück zum Zitat Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR et al (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 354(13):1362–1369PubMedCrossRef Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR et al (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 354(13):1362–1369PubMedCrossRef
4.
Zurück zum Zitat Harousseau JL (2005) Stem cell transplantation in multiple myeloma (0, 1, or 2). Curr Opin Oncol 17(2):93–98PubMedCrossRef Harousseau JL (2005) Stem cell transplantation in multiple myeloma (0, 1, or 2). Curr Opin Oncol 17(2):93–98PubMedCrossRef
5.
Zurück zum Zitat Barlogie B, Kyle RA, Anderson KC, Greipp PR, Lazarus HM, Hurd DD et al (2006) Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 24(6):929–936PubMedCrossRef Barlogie B, Kyle RA, Anderson KC, Greipp PR, Lazarus HM, Hurd DD et al (2006) Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 24(6):929–936PubMedCrossRef
6.
Zurück zum Zitat Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20(22):4420–4427PubMedCrossRef Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 20(22):4420–4427PubMedCrossRef
7.
Zurück zum Zitat Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617PubMedCrossRef Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617PubMedCrossRef
8.
Zurück zum Zitat Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498PubMedCrossRef Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498PubMedCrossRef
9.
Zurück zum Zitat Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187PubMedCrossRef Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187PubMedCrossRef
10.
Zurück zum Zitat Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K (1992) Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326–2335PubMed Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K (1992) Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80(9):2326–2335PubMed
11.
Zurück zum Zitat Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64(4):1546–1558PubMedCrossRef Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64(4):1546–1558PubMedCrossRef
12.
Zurück zum Zitat Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al (2003) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101(11):4569–4575PubMedCrossRef Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al (2003) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101(11):4569–4575PubMedCrossRef
13.
Zurück zum Zitat Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R (2001) Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 98(10):3082–3086PubMedCrossRef Avet-Loiseau H, Gerson F, Magrangeas F, Minvielle S, Harousseau JL, Bataille R (2001) Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 98(10):3082–3086PubMedCrossRef
14.
Zurück zum Zitat Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH et al (1995) Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86(11):4250–4256PubMed Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH et al (1995) Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86(11):4250–4256PubMed
15.
Zurück zum Zitat Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR et al (2006) Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108(5):1724–1732PubMedCrossRef Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR et al (2006) Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108(5):1724–1732PubMedCrossRef
16.
Zurück zum Zitat Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B et al (2006) High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cells 9(4):313–325CrossRef Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B et al (2006) High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cells 9(4):313–325CrossRef
17.
Zurück zum Zitat Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Davila R, Gonzalez-Paz N et al (2003) Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 17(2):427–436PubMedCrossRef Debes-Marun CS, Dewald GW, Bryant S, Picken E, Santana-Davila R, Gonzalez-Paz N et al (2003) Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia 17(2):427–436PubMedCrossRef
18.
Zurück zum Zitat Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C (2001) Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 98(7):2229–2238PubMedCrossRef Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C (2001) Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 98(7):2229–2238PubMedCrossRef
19.
Zurück zum Zitat Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028PubMedCrossRef Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028PubMedCrossRef
20.
Zurück zum Zitat Bergsagel PL, Kuehl WM (2005) Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 23(26):6333–6338PubMedCrossRef Bergsagel PL, Kuehl WM (2005) Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 23(26):6333–6338PubMedCrossRef
21.
Zurück zum Zitat Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E et al (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99(5):1745–1757PubMedCrossRef Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E et al (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99(5):1745–1757PubMedCrossRef
22.
Zurück zum Zitat Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O’Connor SM et al (2003) Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 102(13):4504–4511PubMedCrossRef Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O’Connor SM et al (2003) Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 102(13):4504–4511PubMedCrossRef
23.
Zurück zum Zitat Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S et al (2005) Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 24(15):2461–2473PubMedCrossRef Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S et al (2005) Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 24(15):2461–2473PubMedCrossRef
24.
Zurück zum Zitat Duhrsen U, Hossfeld DK (1996) Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol 73(2):53–70PubMedCrossRef Duhrsen U, Hossfeld DK (1996) Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol 73(2):53–70PubMedCrossRef
25.
Zurück zum Zitat Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93(5):1658–1667PubMed Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93(5):1658–1667PubMed
26.
Zurück zum Zitat Mitsiades CS, Mitsiades N, Munshi NC, Anderson KC (2004) Focus on multiple myeloma. Cancer Cells 6(5):439–444CrossRef Mitsiades CS, Mitsiades N, Munshi NC, Anderson KC (2004) Focus on multiple myeloma. Cancer Cells 6(5):439–444CrossRef
27.
Zurück zum Zitat Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N et al (2001) Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98(20):11581–11586PubMedCrossRef Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N et al (2001) Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98(20):11581–11586PubMedCrossRef
28.
Zurück zum Zitat Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98(13):3527–3533PubMedCrossRef Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98(13):3527–3533PubMedCrossRef
29.
Zurück zum Zitat Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S et al (2002) Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 100(6):2195–2202PubMed Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S et al (2002) Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 100(6):2195–2202PubMed
30.
Zurück zum Zitat Zannettino AC, Farrugia AN, Kortesidis A, Manavis J, To LB, Martin SK et al (2005) Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 65(5):1700–1709PubMedCrossRef Zannettino AC, Farrugia AN, Kortesidis A, Manavis J, To LB, Martin SK et al (2005) Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 65(5):1700–1709PubMedCrossRef
31.
Zurück zum Zitat Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494PubMedCrossRef Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494PubMedCrossRef
32.
Zurück zum Zitat Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E et al (2005) Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 106(9):3160–3165PubMedCrossRef Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E et al (2005) Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 106(9):3160–3165PubMedCrossRef
33.
Zurück zum Zitat Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC (1995) CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 85(7):1903–1912PubMed Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC (1995) CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 85(7):1903–1912PubMed
34.
Zurück zum Zitat Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA et al (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87(3):1104–1112PubMed Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA et al (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87(3):1104–1112PubMed
35.
Zurück zum Zitat Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33):4519–4527PubMedCrossRef Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33):4519–4527PubMedCrossRef
36.
Zurück zum Zitat Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM et al (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95(8):2630–2636PubMed Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM et al (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95(8):2630–2636PubMed
37.
Zurück zum Zitat Franchimont N, Rydziel S, Canalis E (2000) Transforming growth factor-beta increases interleukin-6 transcripts in osteoblasts. Bone 26(3):249–253PubMedCrossRef Franchimont N, Rydziel S, Canalis E (2000) Transforming growth factor-beta increases interleukin-6 transcripts in osteoblasts. Bone 26(3):249–253PubMedCrossRef
38.
Zurück zum Zitat Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL et al (1997) IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 159(5):2212–2221PubMed Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL et al (1997) IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 159(5):2212–2221PubMed
39.
Zurück zum Zitat Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20PubMedCrossRef Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20PubMedCrossRef
40.
Zurück zum Zitat Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20(42):5991–6000PubMedCrossRef Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20(42):5991–6000PubMedCrossRef
41.
Zurück zum Zitat Pelliniemi TT, Irjala K, Mattila K, Pulkki K, Rajamaki A, Tienhaara A et al (1995) Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Finnish Leukemia Group. Blood 85(3):765–771PubMed Pelliniemi TT, Irjala K, Mattila K, Pulkki K, Rajamaki A, Tienhaara A et al (1995) Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Finnish Leukemia Group. Blood 85(3):765–771PubMed
42.
Zurück zum Zitat Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G et al (2006) Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108(5):1698–1707PubMedCrossRef Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G et al (2006) Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108(5):1698–1707PubMedCrossRef
43.
Zurück zum Zitat Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S et al (2004) Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103(8):3175–3184PubMedCrossRef Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S et al (2004) Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103(8):3175–3184PubMedCrossRef
44.
Zurück zum Zitat Lichtenstein A, Berenson J, Norman D, Chang MP, Carlile A (1989) Production of cytokines by bone marrow cells obtained from patients with multiple myeloma. Blood 74(4):1266–1273PubMed Lichtenstein A, Berenson J, Norman D, Chang MP, Carlile A (1989) Production of cytokines by bone marrow cells obtained from patients with multiple myeloma. Blood 74(4):1266–1273PubMed
45.
Zurück zum Zitat Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33):4519–4527PubMedCrossRef Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33):4519–4527PubMedCrossRef
46.
Zurück zum Zitat Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K et al (2004) VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 104(9):2886–2892PubMedCrossRef Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K et al (2004) VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 104(9):2886–2892PubMedCrossRef
47.
Zurück zum Zitat Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98(2):428–435PubMedCrossRef Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98(2):428–435PubMedCrossRef
48.
Zurück zum Zitat Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D et al (2002) Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21(37):5673–5683PubMedCrossRef Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D et al (2002) Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21(37):5673–5683PubMedCrossRef
49.
Zurück zum Zitat Qiang YW, Kopantzev E, Rudikoff S (2002) Insulinlike growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood 99(11):4138–4146PubMedCrossRef Qiang YW, Kopantzev E, Rudikoff S (2002) Insulinlike growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood 99(11):4138–4146PubMedCrossRef
50.
Zurück zum Zitat Tai YT, Podar K, Catley L, Tseng YH, Akiyama M, Shringarpure R et al (2003) Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res 63(18):5850–5858PubMed Tai YT, Podar K, Catley L, Tseng YH, Akiyama M, Shringarpure R et al (2003) Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling. Cancer Res 63(18):5850–5858PubMed
51.
Zurück zum Zitat Qiang YW, Yao L, Tosato G, Rudikoff S (2004) Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 103(1):301–308PubMedCrossRef Qiang YW, Yao L, Tosato G, Rudikoff S (2004) Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 103(1):301–308PubMedCrossRef
52.
Zurück zum Zitat Gazitt Y, Akay C (2004) Mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4. Stem Cells 22(1):65–73PubMedCrossRef Gazitt Y, Akay C (2004) Mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4. Stem Cells 22(1):65–73PubMedCrossRef
53.
Zurück zum Zitat Costes V, Portier M, Lu ZY, Rossi JF, Bataille R, Klein B (1998) Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br J Haematol 103(4):1152–1160PubMedCrossRef Costes V, Portier M, Lu ZY, Rossi JF, Bataille R, Klein B (1998) Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br J Haematol 103(4):1152–1160PubMedCrossRef
54.
Zurück zum Zitat Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L et al (2005) Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 115(2):369–378PubMedCrossRef Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L et al (2005) Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 115(2):369–378PubMedCrossRef
55.
Zurück zum Zitat Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101(2):690–698PubMedCrossRef Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al (2003) BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101(2):690–698PubMedCrossRef
56.
Zurück zum Zitat Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM (2004) Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 10(11):1187–1189PubMedCrossRef Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM (2004) Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells. Nat Med 10(11):1187–1189PubMedCrossRef
57.
Zurück zum Zitat Ishikawa H, Tsuyama N, Abroun S, Liu S, Li FJ, Taniguchi O et al (2002) Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood 99(6):2172–2178PubMedCrossRef Ishikawa H, Tsuyama N, Abroun S, Liu S, Li FJ, Taniguchi O et al (2002) Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood 99(6):2172–2178PubMedCrossRef
58.
Zurück zum Zitat Li FJ, Tsuyama N, Ishikawa H, Obata M, Abroun S, Liu S et al (2005) A rapid translocation of CD45RO but not CD45RA to lipid rafts in IL-6-induced proliferation in myeloma. Blood 105(8):3295–3302PubMedCrossRef Li FJ, Tsuyama N, Ishikawa H, Obata M, Abroun S, Liu S et al (2005) A rapid translocation of CD45RO but not CD45RA to lipid rafts in IL-6-induced proliferation in myeloma. Blood 105(8):3295–3302PubMedCrossRef
59.
Zurück zum Zitat Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310PubMedCrossRef Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310PubMedCrossRef
60.
Zurück zum Zitat Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759PubMedCrossRef Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759PubMedCrossRef
61.
Zurück zum Zitat Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S et al (2004) Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103(8):3175–3184PubMedCrossRef Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S et al (2004) Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 103(8):3175–3184PubMedCrossRef
62.
Zurück zum Zitat Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS (1999) Role o f NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood 93(9):3044–3052PubMed Feinman R, Koury J, Thames M, Barlogie B, Epstein J, Siegel DS (1999) Role o f NF-kappaB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood 93(9):3044–3052PubMed
63.
Zurück zum Zitat Shen J, Channavajhala P, Seldin DC, Sonenshein GE (2001) Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha. J Immunol 167(9):4919–4925PubMed Shen J, Channavajhala P, Seldin DC, Sonenshein GE (2001) Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha. J Immunol 167(9):4919–4925PubMed
64.
Zurück zum Zitat Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al (2002) Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 99(11):4079–4086PubMedCrossRef Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al (2002) Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 99(11):4079–4086PubMedCrossRef
65.
Zurück zum Zitat Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173(3):699–703PubMedCrossRef Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173(3):699–703PubMedCrossRef
66.
Zurück zum Zitat Deng L, Ding W, Granstein RD (2003) Thalidomide inhibits tumor necrosis factor-alpha production and antigen presentation by Langerhans cells. J Invest Dermatol 121(5):1060–1065PubMedCrossRef Deng L, Ding W, Granstein RD (2003) Thalidomide inhibits tumor necrosis factor-alpha production and antigen presentation by Langerhans cells. J Invest Dermatol 121(5):1060–1065PubMedCrossRef
67.
Zurück zum Zitat D'Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91(9):4082–4085PubMedCrossRef D'Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91(9):4082–4085PubMedCrossRef
68.
Zurück zum Zitat Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL et al (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 102(24):8567–8572PubMedCrossRef Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL et al (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 102(24):8567–8572PubMedCrossRef
69.
Zurück zum Zitat Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P et al (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341(21):1565–1571PubMedCrossRef Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P et al (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341(21):1565–1571PubMedCrossRef
70.
Zurück zum Zitat Barlogie B, Desikan R, Eddlemon P, Spencer T, Zeldis J, Munshi N et al (2001) Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 98(2):492–494PubMedCrossRef Barlogie B, Desikan R, Eddlemon P, Spencer T, Zeldis J, Munshi N et al (2001) Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 98(2):492–494PubMedCrossRef
71.
Zurück zum Zitat Alexanian R, Weber D, Anagnostopoulos A, Delasalle K, Wang M, Rankin K (2003) Thalidomide with or without dexamethasone for refractory or relapsing multiple myeloma. Semin Hematol 40(4 Suppl 4):3–7PubMedCrossRef Alexanian R, Weber D, Anagnostopoulos A, Delasalle K, Wang M, Rankin K (2003) Thalidomide with or without dexamethasone for refractory or relapsing multiple myeloma. Semin Hematol 40(4 Suppl 4):3–7PubMedCrossRef
72.
Zurück zum Zitat Barlogie B, Zangari M, Spencer T, Fassas A, Anaissie E, Badros A et al (2001) Thalidomide in the management of multiple myeloma. Semin Hematol 38(3):250–259PubMedCrossRef Barlogie B, Zangari M, Spencer T, Fassas A, Anaissie E, Badros A et al (2001) Thalidomide in the management of multiple myeloma. Semin Hematol 38(3):250–259PubMedCrossRef
73.
Zurück zum Zitat Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F et al (2006) Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med 354(10):1021–1030PubMedCrossRef Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F et al (2006) Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med 354(10):1021–1030PubMedCrossRef
74.
Zurück zum Zitat Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M et al (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23(23):5334–5346PubMedCrossRef Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M et al (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23(23):5334–5346PubMedCrossRef
75.
Zurück zum Zitat Anderson KC (2003) The role of immunomodulatory drugs in multiple myeloma. Semin Hematol 40(4 Suppl 4):23–32PubMedCrossRef Anderson KC (2003) The role of immunomodulatory drugs in multiple myeloma. Semin Hematol 40(4 Suppl 4):23–32PubMedCrossRef
76.
Zurück zum Zitat Richardson P, Anderson K (2004) Immunomodulatory analogs of thalidomide: an emerging new therapy in myeloma. J Clin Oncol 22(16):3212–3224PubMedCrossRef Richardson P, Anderson K (2004) Immunomodulatory analogs of thalidomide: an emerging new therapy in myeloma. J Clin Oncol 22(16):3212–3224PubMedCrossRef
77.
Zurück zum Zitat Richardson PG, Blood E, Mitsiades CS, Jagannath S, Zeldenrust SR, Alsina M et al (2006) A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 108:3458–3464PubMedCrossRef Richardson PG, Blood E, Mitsiades CS, Jagannath S, Zeldenrust SR, Alsina M et al (2006) A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 108:3458–3464PubMedCrossRef
78.
Zurück zum Zitat Bartlett JB, Tozer A, Stirling D, Zeldis JB (2005) Recent clinical studies of the immunomodulatory drug (IMiD) lenalidomide. Br J Cancer 93(6):613–619PubMedCrossRef Bartlett JB, Tozer A, Stirling D, Zeldis JB (2005) Recent clinical studies of the immunomodulatory drug (IMiD) lenalidomide. Br J Cancer 93(6):613–619PubMedCrossRef
79.
Zurück zum Zitat Rajkumar SV, Hayman SR, Lacy MQ, Dispenzieri A, Geyer SM, Kabat B et al (2005) Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 106(13):4050–4053PubMedCrossRef Rajkumar SV, Hayman SR, Lacy MQ, Dispenzieri A, Geyer SM, Kabat B et al (2005) Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 106(13):4050–4053PubMedCrossRef
80.
Zurück zum Zitat Mani A, Gelmann EP (2005) The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23(21):4776–4789PubMedCrossRef Mani A, Gelmann EP (2005) The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23(21):4776–4789PubMedCrossRef
81.
Zurück zum Zitat Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22(5):442–451PubMedCrossRef Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22(5):442–451PubMedCrossRef
82.
Zurück zum Zitat Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6(1):79–87PubMedCrossRef Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6(1):79–87PubMedCrossRef
83.
Zurück zum Zitat Adams J (2001) Proteasome inhibition in cancer: development of PS-341. Semin Oncol 28(6):613–619PubMedCrossRef Adams J (2001) Proteasome inhibition in cancer: development of PS-341. Semin Oncol 28(6):613–619PubMedCrossRef
84.
Zurück zum Zitat Elliott PJ, Ross JS (2001) The proteasome: a new target for novel drug therapies. Am J Clin Pathol 116(5):637–646PubMedCrossRef Elliott PJ, Ross JS (2001) The proteasome: a new target for novel drug therapies. Am J Clin Pathol 116(5):637–646PubMedCrossRef
85.
Zurück zum Zitat Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61(7):3071–3076PubMed Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61(7):3071–3076PubMed
86.
Zurück zum Zitat LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N et al (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62(17):4996–5000PubMed LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N et al (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62(17):4996–5000PubMed
87.
Zurück zum Zitat Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172PubMedCrossRef Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172PubMedCrossRef
88.
Zurück zum Zitat Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(11):2615–2622PubMed Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(11):2615–2622PubMed
89.
Zurück zum Zitat Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23(3):630–639PubMedCrossRef Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23(3):630–639PubMedCrossRef
90.
Zurück zum Zitat Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD (2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23(11):2009–2015PubMedCrossRef Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD (2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23(11):2009–2015PubMedCrossRef
91.
Zurück zum Zitat Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277(19):16639–16647PubMedCrossRef Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T et al (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277(19):16639–16647PubMedCrossRef
92.
Zurück zum Zitat Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61(9):3535–3540PubMed Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61(9):3535–3540PubMed
93.
Zurück zum Zitat Chauhan D, Li G, Podar K, Hideshima T, Mitsiades C, Schlossman R et al (2004) Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood 104(8):2458–2466PubMedCrossRef Chauhan D, Li G, Podar K, Hideshima T, Mitsiades C, Schlossman R et al (2004) Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood 104(8):2458–2466PubMedCrossRef
94.
Zurück zum Zitat Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A et al (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102(1):303–310PubMedCrossRef Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A et al (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102(1):303–310PubMedCrossRef
95.
Zurück zum Zitat Sayers TJ, Murphy WJ (2006) Combining proteasome inhibition with TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) for cancer therapy. Cancer Immunol Immunother 55(1):76–84PubMedCrossRef Sayers TJ, Murphy WJ (2006) Combining proteasome inhibition with TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) for cancer therapy. Cancer Immunol Immunother 55(1):76–84PubMedCrossRef
96.
Zurück zum Zitat Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS (2005) The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4(3):443–449PubMed Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS (2005) The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4(3):443–449PubMed
97.
Zurück zum Zitat Chauhan D, Li G, Podar K, Hideshima T, Neri P, He D et al (2005) A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res 65(18):8350–8358PubMedCrossRef Chauhan D, Li G, Podar K, Hideshima T, Neri P, He D et al (2005) A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res 65(18):8350–8358PubMedCrossRef
98.
Zurück zum Zitat Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cells. 8(5):407–419CrossRef Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cells. 8(5):407–419CrossRef
99.
Zurück zum Zitat Chauhan D, Catley L, Li G, Hideshima T, Richardson P, Palladino M et al (2005) Preclinical evaluation of a novel and orally active proteasome inhibitor as a therapy in relapsed/refractory multiple myeloma. J Clin Oncol (ASCO Annual Meeting Proceedings) 23(16S):3122 Chauhan D, Catley L, Li G, Hideshima T, Richardson P, Palladino M et al (2005) Preclinical evaluation of a novel and orally active proteasome inhibitor as a therapy in relapsed/refractory multiple myeloma. J Clin Oncol (ASCO Annual Meeting Proceedings) 23(16S):3122
100.
Zurück zum Zitat Bharti AC, Donato N, Singh S, Aggarwal BB (2003) Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101(3):1053–1062PubMedCrossRef Bharti AC, Donato N, Singh S, Aggarwal BB (2003) Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101(3):1053–1062PubMedCrossRef
101.
Zurück zum Zitat Hideshima T, Hayashi T, Chauhan D, Akiyama M, Richardson P, Anderson K (2003) Biologic sequelae of c-Jun NH(2)-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene 22(54):8797–8801PubMedCrossRef Hideshima T, Hayashi T, Chauhan D, Akiyama M, Richardson P, Anderson K (2003) Biologic sequelae of c-Jun NH(2)-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene 22(54):8797–8801PubMedCrossRef
102.
Zurück zum Zitat Akiyama M, Hideshima T, Hayashi T, Tai YT, Mitsiades CS, Mitsiades N et al (2003) Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 63(1):18–21PubMed Akiyama M, Hideshima T, Hayashi T, Tai YT, Mitsiades CS, Mitsiades N et al (2003) Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 63(1):18–21PubMed
103.
Zurück zum Zitat Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X et al (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89(9):3345–3353PubMed Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X et al (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89(9):3345–3353PubMed
104.
Zurück zum Zitat Raffoux E, Rousselot P, Poupon J, Daniel MT, Cassinat B, Delarue R et al (2003) Combined treatment with arsenic trioxide and all-trans-retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol 21(12):2326–2334PubMedCrossRef Raffoux E, Rousselot P, Poupon J, Daniel MT, Cassinat B, Delarue R et al (2003) Combined treatment with arsenic trioxide and all-trans-retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol 21(12):2326–2334PubMedCrossRef
105.
Zurück zum Zitat Rousselot P, Labaume S, Marolleau JP, Larghero J, Noguera MH, Brouet JC et al (1999) Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 59(5):1041–1048PubMed Rousselot P, Labaume S, Marolleau JP, Larghero J, Noguera MH, Brouet JC et al (1999) Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 59(5):1041–1048PubMed
106.
Zurück zum Zitat Hayashi T, Hideshima T, Akiyama M, Richardson P, Schlossman RL, Chauhan D et al (2002) Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol Cancer Ther 1(10):851–860PubMed Hayashi T, Hideshima T, Akiyama M, Richardson P, Schlossman RL, Chauhan D et al (2002) Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol Cancer Ther 1(10):851–860PubMed
107.
Zurück zum Zitat Rousselot P, Larghero J, Labaume S, Poupon J, Chopin M, Dosquet C et al (2004) Arsenic trioxide is effective in the treatment of multiple myeloma in SCID mice. Eur J Haematol 72(3):166–171PubMedCrossRef Rousselot P, Larghero J, Labaume S, Poupon J, Chopin M, Dosquet C et al (2004) Arsenic trioxide is effective in the treatment of multiple myeloma in SCID mice. Eur J Haematol 72(3):166–171PubMedCrossRef
108.
Zurück zum Zitat Munshi NC, Tricot G, Desikan R, Badros A, Zangari M, Toor A et al (2002) Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia 16(9):1835–1837PubMedCrossRef Munshi NC, Tricot G, Desikan R, Badros A, Zangari M, Toor A et al (2002) Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia 16(9):1835–1837PubMedCrossRef
109.
Zurück zum Zitat Hussein MA, Saleh M, Ravandi F, Mason J, Rifkin RM, Ellison R (2004) Phase 2 study of arsenic trioxide in patients with relapsed or refractory multiple myeloma. Br J Haematol 125(4):470–476PubMedCrossRef Hussein MA, Saleh M, Ravandi F, Mason J, Rifkin RM, Ellison R (2004) Phase 2 study of arsenic trioxide in patients with relapsed or refractory multiple myeloma. Br J Haematol 125(4):470–476PubMedCrossRef
110.
Zurück zum Zitat Hu J, Fang J, Dong Y, Chen SJ, Chen Z (2005) Arsenic in cancer therapy. Anticancer Drugs 16(2):119–127PubMedCrossRef Hu J, Fang J, Dong Y, Chen SJ, Chen Z (2005) Arsenic in cancer therapy. Anticancer Drugs 16(2):119–127PubMedCrossRef
111.
Zurück zum Zitat Berenson JR, Swift RA, Ferretti D, Purner MB (2004) A prospective, open-label safety and efficacy study of combination treatment with melphalan, arsenic trioxide, and ascorbic acid in patients with relapsed or refractory multiple myeloma. Clin Lymphoma 5(2):130–134PubMed Berenson JR, Swift RA, Ferretti D, Purner MB (2004) A prospective, open-label safety and efficacy study of combination treatment with melphalan, arsenic trioxide, and ascorbic acid in patients with relapsed or refractory multiple myeloma. Clin Lymphoma 5(2):130–134PubMed
112.
Zurück zum Zitat Borad MJ, Swift R, Berenson JR (2005) Efficacy of melphalan, arsenic trioxide, and ascorbic acid combination therapy (MAC) in relapsed and refractory multiple myeloma. Leukemia 19(1):154–156PubMed Borad MJ, Swift R, Berenson JR (2005) Efficacy of melphalan, arsenic trioxide, and ascorbic acid combination therapy (MAC) in relapsed and refractory multiple myeloma. Leukemia 19(1):154–156PubMed
113.
Zurück zum Zitat Rousselot P, Larghero J, Arnulf B, Poupon J, Royer B, Tibi A et al (2004) A clinical and pharmacological study of arsenic trioxide in advanced multiple myeloma patients. Leukemia 18(9):1518–1521PubMedCrossRef Rousselot P, Larghero J, Arnulf B, Poupon J, Royer B, Tibi A et al (2004) A clinical and pharmacological study of arsenic trioxide in advanced multiple myeloma patients. Leukemia 18(9):1518–1521PubMedCrossRef
114.
Zurück zum Zitat Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al (2004) Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cells 5(3):221–230CrossRef Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M et al (2004) Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cells 5(3):221–230CrossRef
115.
Zurück zum Zitat Menu E, Jernberg-Wiklund H, Stromberg T, De Raeve H, Girnita L, Larsson O et al (2006) Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107(2):655–660PubMedCrossRef Menu E, Jernberg-Wiklund H, Stromberg T, De Raeve H, Girnita L, Larsson O et al (2006) Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107(2):655–660PubMedCrossRef
116.
Zurück zum Zitat Stromberg T, Ekman S, Girnita L, Dimberg LY, Larsson O, Axelson M et al (2006) IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood 107(2):669–678PubMedCrossRef Stromberg T, Ekman S, Girnita L, Dimberg LY, Larsson O, Axelson M et al (2006) IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood 107(2):669–678PubMedCrossRef
117.
Zurück zum Zitat Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM (2005) Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood 105(1):317–323PubMedCrossRef Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM (2005) Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood 105(1):317–323PubMedCrossRef
118.
Zurück zum Zitat Hu L, Shi Y, Hsu JH, Gera J, Van Ness B, Lichtenstein A (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101(8):3126–3135PubMedCrossRef Hu L, Shi Y, Hsu JH, Gera J, Van Ness B, Lichtenstein A (2003) Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 101(8):3126–3135PubMedCrossRef
119.
Zurück zum Zitat Le Gouill S, Pellat-Deceunynck C, Harousseau JL, Rapp MJ, Robillard N, Bataille R et al (2002) Farnesyl transferase inhibitor R115777 induces apoptosis of human myeloma cells. Leukemia 16(9):1664–1667PubMedCrossRef Le Gouill S, Pellat-Deceunynck C, Harousseau JL, Rapp MJ, Robillard N, Bataille R et al (2002) Farnesyl transferase inhibitor R115777 induces apoptosis of human myeloma cells. Leukemia 16(9):1664–1667PubMedCrossRef
120.
Zurück zum Zitat Ochiai N, Uchida R, Fuchida S, Okano A, Okamoto M, Ashihara E et al (2003) Effect of farnesyl transferase inhibitor R115777 on the growth of fresh and cloned myeloma cells in vitro. Blood 102(9):3349–3353PubMedCrossRef Ochiai N, Uchida R, Fuchida S, Okano A, Okamoto M, Ashihara E et al (2003) Effect of farnesyl transferase inhibitor R115777 on the growth of fresh and cloned myeloma cells in vitro. Blood 102(9):3349–3353PubMedCrossRef
121.
Zurück zum Zitat Beaupre DM, McCafferty-Grad J, Bahlis NJ, Boise LH, Lichtenheld MG (2003) Farnesyl transferase inhibitors enhance death receptor signals and induce apoptosis in multiple myeloma cells. Leuk Lymphoma 44(12):2123–2134PubMedCrossRef Beaupre DM, McCafferty-Grad J, Bahlis NJ, Boise LH, Lichtenheld MG (2003) Farnesyl transferase inhibitors enhance death receptor signals and induce apoptosis in multiple myeloma cells. Leuk Lymphoma 44(12):2123–2134PubMedCrossRef
122.
Zurück zum Zitat Bolick SC, Landowski TH, Boulware D, Oshiro MM, Ohkanda J, Hamilton AD et al (2003) The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug-resistant myeloma tumor cells. Leukemia 17(2):451–457PubMedCrossRef Bolick SC, Landowski TH, Boulware D, Oshiro MM, Ohkanda J, Hamilton AD et al (2003) The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug-resistant myeloma tumor cells. Leukemia 17(2):451–457PubMedCrossRef
123.
Zurück zum Zitat Cortes J, Albitar M, Thomas D, Giles F, Kurzrock R, Thibault A et al (2003) Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood 101(5):1692–1697PubMedCrossRef Cortes J, Albitar M, Thomas D, Giles F, Kurzrock R, Thibault A et al (2003) Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood 101(5):1692–1697PubMedCrossRef
124.
Zurück zum Zitat Alsina M, Fonseca R, Wilson EF, Belle AN, Gerbino E, Price-Troska T et al (2004) Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 103(9):3271–3277PubMedCrossRef Alsina M, Fonseca R, Wilson EF, Belle AN, Gerbino E, Price-Troska T et al (2004) Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 103(9):3271–3277PubMedCrossRef
125.
Zurück zum Zitat Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE et al (2005) Anti-myeloma activity of heat shock protein-90 inhibition. Blood 107(3):1092–1100PubMedCrossRef Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE et al (2005) Anti-myeloma activity of heat shock protein-90 inhibition. Blood 107(3):1092–1100PubMedCrossRef
126.
Zurück zum Zitat David E, Sun SY, Waller EK, Chen J, Khuri FR, Lonial S (2005) The combination of the Farnesyl transferase inhibitor (Lonafarnib) and the proteasome inhibitor (Bortezomib) induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood 106(13):4322–4329PubMedCrossRef David E, Sun SY, Waller EK, Chen J, Khuri FR, Lonial S (2005) The combination of the Farnesyl transferase inhibitor (Lonafarnib) and the proteasome inhibitor (Bortezomib) induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood 106(13):4322–4329PubMedCrossRef
127.
Zurück zum Zitat van de Donk NW, Lokhorst HM, Nijhuis EH, Kamphuis MM, Bloem AC (2005) Geranylgeranylated proteins are involved in the regulation of myeloma cell growth. Clin Cancer Res 11(2 Pt 1):429–439PubMed van de Donk NW, Lokhorst HM, Nijhuis EH, Kamphuis MM, Bloem AC (2005) Geranylgeranylated proteins are involved in the regulation of myeloma cell growth. Clin Cancer Res 11(2 Pt 1):429–439PubMed
128.
Zurück zum Zitat Morgan MA, Sebil T, Aydilek E, Peest D, Ganser A, Reuter CW (2005) Combining prenylation inhibitors causes synergistic cytotoxicity, apoptosis and disruption of RAS-to-MAP kinase signalling in multiple myeloma cells. Br J Haematol 130(6):912–925PubMedCrossRef Morgan MA, Sebil T, Aydilek E, Peest D, Ganser A, Reuter CW (2005) Combining prenylation inhibitors causes synergistic cytotoxicity, apoptosis and disruption of RAS-to-MAP kinase signalling in multiple myeloma cells. Br J Haematol 130(6):912–925PubMedCrossRef
129.
Zurück zum Zitat Podar K, Tai YT, Lin BK, Narsimhan RP, Sattler M, Kijima T et al (2002) Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem 277(10):7875–7881PubMedCrossRef Podar K, Tai YT, Lin BK, Narsimhan RP, Sattler M, Kijima T et al (2002) Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J Biol Chem 277(10):7875–7881PubMedCrossRef
130.
Zurück zum Zitat Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20(2):193–199PubMedCrossRef Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20(2):193–199PubMedCrossRef
131.
Zurück zum Zitat Lin B, Podar K, Gupta D, Tai YT, Li S, Weller E et al (2002) The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 62(17):5019–5026PubMed Lin B, Podar K, Gupta D, Tai YT, Li S, Weller E et al (2002) The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 62(17):5019–5026PubMed
132.
Zurück zum Zitat Podar K, Catley LP, Tai YT, Shringarpure R, Carvalho P, Hayashi T et al (2004) GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 103(9):3474–3479PubMedCrossRef Podar K, Catley LP, Tai YT, Shringarpure R, Carvalho P, Hayashi T et al (2004) GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 103(9):3474–3479PubMedCrossRef
133.
Zurück zum Zitat Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J et al (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10(1 Pt 1):88–95PubMedCrossRef Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J et al (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10(1 Pt 1):88–95PubMedCrossRef
134.
Zurück zum Zitat Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633PubMedCrossRef Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22(53):8628–8633PubMedCrossRef
135.
Zurück zum Zitat Gazitt Y (1999) TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia 13(11):1817–1824PubMedCrossRef Gazitt Y (1999) TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia 13(11):1817–1824PubMedCrossRef
136.
Zurück zum Zitat Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R et al (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98(3):795–704PubMedCrossRef Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, Schlossman R et al (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98(3):795–704PubMedCrossRef
137.
Zurück zum Zitat Gomez-Benito M, Balsas P, Bosque A, Anel A, Marzo I, Naval J (2005) Apo2L/TRAIL is an indirect mediator of apoptosis induced by interferon-alpha in human myeloma cells. FEBS Lett 579(27):6217–6222PubMedCrossRef Gomez-Benito M, Balsas P, Bosque A, Anel A, Marzo I, Naval J (2005) Apo2L/TRAIL is an indirect mediator of apoptosis induced by interferon-alpha in human myeloma cells. FEBS Lett 579(27):6217–6222PubMedCrossRef
138.
Zurück zum Zitat Crowder C, Dahle O, Davis RE, Gabrielsen OS, Rudikoff S (2005) PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 105(3):1280–1287PubMedCrossRef Crowder C, Dahle O, Davis RE, Gabrielsen OS, Rudikoff S (2005) PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 105(3):1280–1287PubMedCrossRef
139.
Zurück zum Zitat Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al (1997) Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16(3):260–264PubMedCrossRef Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al (1997) Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16(3):260–264PubMedCrossRef
140.
Zurück zum Zitat Paterson JL, Li Z, Wen XY, Masih-Khan E, Chang H, Pollett JB et al (2004) Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 124(5):595–603PubMedCrossRef Paterson JL, Li Z, Wen XY, Masih-Khan E, Chang H, Pollett JB et al (2004) Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 124(5):595–603PubMedCrossRef
141.
Zurück zum Zitat Trudel S, Ely S, Farooqi Y, Affer M, Robbiani DF, Chesi M et al (2004) Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 103(9):3521–3528PubMedCrossRef Trudel S, Ely S, Farooqi Y, Affer M, Robbiani DF, Chesi M et al (2004) Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 103(9):3521–3528PubMedCrossRef
142.
Zurück zum Zitat Chen J, Lee BH, Williams IR, Kutok JL, Mitsiades CS, Duclos N et al (2005) FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene 24(56):8259–8267PubMedCrossRef Chen J, Lee BH, Williams IR, Kutok JL, Mitsiades CS, Duclos N et al (2005) FGFR3 as a therapeutic target of the small molecule inhibitor PKC412 in hematopoietic malignancies. Oncogene 24(56):8259–8267PubMedCrossRef
143.
Zurück zum Zitat Trudel S, Stewart AK, Rom E, Wei E, Li ZH, Kotzer S et al (2006) The inhibitory anti-FGFR3 antibody, PRO-001 is cytotoxic to t(4;14) multiple myeloma cells. Blood 7:7 Trudel S, Stewart AK, Rom E, Wei E, Li ZH, Kotzer S et al (2006) The inhibitory anti-FGFR3 antibody, PRO-001 is cytotoxic to t(4;14) multiple myeloma cells. Blood 7:7
144.
Zurück zum Zitat Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14(14):R546–R551PubMedCrossRef Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14(14):R546–R551PubMedCrossRef
145.
Zurück zum Zitat Piazza F, Semenzato G (2004) Molecular therapeutic approaches to acute myeloid leukemia: targeting aberrant chromatin dynamics and signal transduction. Expert Rev Anticancer Ther 4(3):387–400PubMedCrossRef Piazza F, Semenzato G (2004) Molecular therapeutic approaches to acute myeloid leukemia: targeting aberrant chromatin dynamics and signal transduction. Expert Rev Anticancer Ther 4(3):387–400PubMedCrossRef
146.
Zurück zum Zitat Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51PubMedCrossRef Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51PubMedCrossRef
147.
Zurück zum Zitat Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168PubMedCrossRef Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168PubMedCrossRef
148.
Zurück zum Zitat Lavelle D, Chen YH, Hankewych M, DeSimone J (2001) Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol 68(3):170–178PubMedCrossRef Lavelle D, Chen YH, Hankewych M, DeSimone J (2001) Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol 68(3):170–178PubMedCrossRef
149.
Zurück zum Zitat Mitsiades N, Mitsiades CS, Richardson PG, McMullan C, Poulaki V, Fanourakis G et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101(10):4055–4062PubMedCrossRef Mitsiades N, Mitsiades CS, Richardson PG, McMullan C, Poulaki V, Fanourakis G et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101(10):4055–4062PubMedCrossRef
150.
Zurück zum Zitat Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101(2):540–545PubMedCrossRef Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101(2):540–545PubMedCrossRef
151.
Zurück zum Zitat Khan SB, Maududi T, Barton K, Ayers J, Alkan S (2004) Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol 125(2):156–161PubMedCrossRef Khan SB, Maududi T, Barton K, Ayers J, Alkan S (2004) Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol 125(2):156–161PubMedCrossRef
152.
Zurück zum Zitat Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10(11):3839–3852PubMedCrossRef Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10(11):3839–3852PubMedCrossRef
153.
Zurück zum Zitat Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772PubMedCrossRef Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772PubMedCrossRef
154.
Zurück zum Zitat Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99(22):14374–14379PubMedCrossRef Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99(22):14374–14379PubMedCrossRef
155.
Zurück zum Zitat Hideshima T, Podar K, Chauhan D, Ishitsuka K, Mitsiades C, Tai YT et al (2004) p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 23(54):8766–8776PubMedCrossRef Hideshima T, Podar K, Chauhan D, Ishitsuka K, Mitsiades C, Tai YT et al (2004) p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 23(54):8766–8776PubMedCrossRef
156.
Zurück zum Zitat Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q (2006) Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107(6):2432–2439PubMedCrossRef Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q (2006) Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107(6):2432–2439PubMedCrossRef
157.
Zurück zum Zitat Urashima M, Ogata A, Chauhan D, Hatziyanni M, Vidriales MB, Dedera DA et al (1996) Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood 87(5):1928–1938PubMed Urashima M, Ogata A, Chauhan D, Hatziyanni M, Vidriales MB, Dedera DA et al (1996) Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood 87(5):1928–1938PubMed
158.
Zurück zum Zitat Kroning H, Tager M, Thiel U, Ittenson A, Reinhold D, Buhling F et al (1997) Overproduction of IL-7, IL-10 and TGF-beta 1 in multiple myeloma. Acta Haematol 98(2):116–118PubMedCrossRef Kroning H, Tager M, Thiel U, Ittenson A, Reinhold D, Buhling F et al (1997) Overproduction of IL-7, IL-10 and TGF-beta 1 in multiple myeloma. Acta Haematol 98(2):116–118PubMedCrossRef
159.
Zurück zum Zitat Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM (1999) Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 66(6):981–988PubMed Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM (1999) Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 66(6):981–988PubMed
160.
Zurück zum Zitat Abildgaard N, Glerup H, Rungby J, Bendix-Hansen K, Kassem M, Brixen K et al (2000) Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur J Haematol 64(2):121–129PubMedCrossRef Abildgaard N, Glerup H, Rungby J, Bendix-Hansen K, Kassem M, Brixen K et al (2000) Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma. Eur J Haematol 64(2):121–129PubMedCrossRef
161.
Zurück zum Zitat Wright N, de Lera TL, Garcia-Moruja C, Lillo R, Garcia-Sanchez F, Caruz A et al (2003) Transforming growth factor-beta1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion. Blood 102(6):1978–1984PubMedCrossRef Wright N, de Lera TL, Garcia-Moruja C, Lillo R, Garcia-Sanchez F, Caruz A et al (2003) Transforming growth factor-beta1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion. Blood 102(6):1978–1984PubMedCrossRef
162.
Zurück zum Zitat Hayashi T, Hideshima T, Nguyen AN, Munoz O, Podar K, Hamasaki M et al (2004) Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res 10(22):7540–7546PubMedCrossRef Hayashi T, Hideshima T, Nguyen AN, Munoz O, Podar K, Hamasaki M et al (2004) Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res 10(22):7540–7546PubMedCrossRef
Metadaten
Titel
Towards a new age in the treatment of multiple myeloma
verfasst von
Francesco A. Piazza
Carmela Gurrieri
Livio Trentin
Gianpietro Semenzato
Publikationsdatum
01.03.2007
Verlag
Springer-Verlag
Erschienen in
Annals of Hematology / Ausgabe 3/2007
Print ISSN: 0939-5555
Elektronische ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-006-0239-5

Weitere Artikel der Ausgabe 3/2007

Annals of Hematology 3/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.