Skip to main content
Erschienen in: Seminars in Immunopathology 3/2014

01.05.2014 | Review

Plasma cells in immunopathology: concepts and therapeutic strategies

verfasst von: Benjamin Tiburzy, Upasana Kulkarni, Anja Erika Hauser, Melanie Abram, Rudolf Armin Manz

Erschienen in: Seminars in Immunopathology | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Plasma cells are terminally differentiated B cells that secrete antibodies, important for immune protection, but also contribute to any allergic and autoimmune disease. There is increasing evidence that plasma cell populations exhibit a considerable degree of heterogeneity with respect to their immunophenotype, migration behavior, lifetime, and susceptibility to immunosuppressive drugs. Pathogenic long-lived plasma cells are refractory to existing therapies. In contrast, short-lived plasma cells can be depleted by steroids and cytostatic drugs. Therefore, long-lived plasma cells are responsible for therapy-resistant autoantibodies and resemble a challenge for the therapy of antibody-mediated autoimmune diseases. Both lifetime and therapy resistance of plasma cells are supported by factors produced within their microenviromental niches. Current results suggest that plasma cell differentiation and survival factors such as IL-6 also signal via mammalian miRNAs within the plasma cell to modulate downstream transcription factors. Recent evidence also suggests that plasma cells and/or their immediate precursors (plasmablasts) can produce important cytokines and act as antigen-presenting cells, exhibiting so far underestimated roles in immune regulation and bone homeostasis. Here, we provide an overview on plasma cell biology and discuss exciting, experimental, and potential therapeutic approaches to eliminate pathogenic plasma cells.
Literatur
2.
Zurück zum Zitat Ehrich WE, Drabkin DL, Forman C (1949) Nucleic acids and the production of antibody by plasma cells. J Exp Med 90:157–168PubMedCentralPubMed Ehrich WE, Drabkin DL, Forman C (1949) Nucleic acids and the production of antibody by plasma cells. J Exp Med 90:157–168PubMedCentralPubMed
5.
Zurück zum Zitat Slifka MK, Antia R, Whitmire JK, Ahmed R (1998) Humoral immunity due to long-lived plasma cells. Immunity 8:363–372PubMed Slifka MK, Antia R, Whitmire JK, Ahmed R (1998) Humoral immunity due to long-lived plasma cells. Immunity 8:363–372PubMed
7.
Zurück zum Zitat Mumtaz IM, Hoyer BF, Panne D et al (2012) Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J Autoimmun 39:180–188. doi:10.1016/j.jaut.2012.05.010 PubMed Mumtaz IM, Hoyer BF, Panne D et al (2012) Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J Autoimmun 39:180–188. doi:10.​1016/​j.​jaut.​2012.​05.​010 PubMed
8.
Zurück zum Zitat Ferraro AJ, Drayson MT, Savage COS, MacLennan ICM (2008) Levels of autoantibodies, unlike antibodies to all extrinsic antigen groups, fall following B cell depletion with rituximab. Eur J Immunol 38:292–298. doi:10.1002/eji.200737557 PubMed Ferraro AJ, Drayson MT, Savage COS, MacLennan ICM (2008) Levels of autoantibodies, unlike antibodies to all extrinsic antigen groups, fall following B cell depletion with rituximab. Eur J Immunol 38:292–298. doi:10.​1002/​eji.​200737557 PubMed
10.
Zurück zum Zitat Cassese G, Arce S, Hauser AE et al (2003) Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol 171:1684–1690PubMed Cassese G, Arce S, Hauser AE et al (2003) Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol 171:1684–1690PubMed
12.
Zurück zum Zitat Chu VT, Fröhlich A, Steinhauser G et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159. doi:10.1038/ni.1981 PubMed Chu VT, Fröhlich A, Steinhauser G et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159. doi:10.​1038/​ni.​1981 PubMed
13.
Zurück zum Zitat Matthes T, Werner-Favre C, Zubler RH (1995) Cytokine expression and regulation of human plasma cells: disappearance of interleukin-10 and persistence of transforming growth factor-beta 1. Eur J Immunol 25:508–512. doi:10.1002/eji.1830250230 PubMed Matthes T, Werner-Favre C, Zubler RH (1995) Cytokine expression and regulation of human plasma cells: disappearance of interleukin-10 and persistence of transforming growth factor-beta 1. Eur J Immunol 25:508–512. doi:10.​1002/​eji.​1830250230 PubMed
17.
Zurück zum Zitat Bermejo DA, Jackson SW, Gorosito-Serran M et al (2013) Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 14:514–522. doi:10.1038/ni.2569 PubMedCentralPubMed Bermejo DA, Jackson SW, Gorosito-Serran M et al (2013) Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 14:514–522. doi:10.​1038/​ni.​2569 PubMedCentralPubMed
22.
Zurück zum Zitat Odendahl M, Mei H, Hoyer BF et al (2005) Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105:1614–1621. doi:10.1182/blood-2004-07-2507 PubMed Odendahl M, Mei H, Hoyer BF et al (2005) Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105:1614–1621. doi:10.​1182/​blood-2004-07-2507 PubMed
23.
Zurück zum Zitat DiLillo DJ, Hamaguchi Y, Ueda Y et al (2008) Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J Immunol 180:361–371PubMed DiLillo DJ, Hamaguchi Y, Ueda Y et al (2008) Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J Immunol 180:361–371PubMed
24.
Zurück zum Zitat Muehlinghaus G, Cigliano L, Huehn S et al (2005) Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood 105:3965–3971. doi:10.1182/blood-2004-08-2992 PubMed Muehlinghaus G, Cigliano L, Huehn S et al (2005) Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood 105:3965–3971. doi:10.​1182/​blood-2004-08-2992 PubMed
25.
Zurück zum Zitat Moser K, Kalies K, Szyska M et al (2012) CXCR3 promotes the production of IgG1 autoantibodies but is not essential for the development of lupus nephritis in NZB/NZW mice. Arthritis Rheum 64:1237–1246. doi:10.1002/art.33424 PubMed Moser K, Kalies K, Szyska M et al (2012) CXCR3 promotes the production of IgG1 autoantibodies but is not essential for the development of lupus nephritis in NZB/NZW mice. Arthritis Rheum 64:1237–1246. doi:10.​1002/​art.​33424 PubMed
27.
Zurück zum Zitat Panzer U, Steinmetz OM, Paust H-J et al (2007) Chemokine receptor CXCR3 mediates T cell recruitment and tissue injury in nephrotoxic nephritis in mice. J Am Soc Nephrol 18:2071–2084. doi:10.1681/ASN.2006111237 PubMed Panzer U, Steinmetz OM, Paust H-J et al (2007) Chemokine receptor CXCR3 mediates T cell recruitment and tissue injury in nephrotoxic nephritis in mice. J Am Soc Nephrol 18:2071–2084. doi:10.​1681/​ASN.​2006111237 PubMed
29.
Zurück zum Zitat Noris M, Bernasconi S, Casiraghi F et al (1995) Monocyte chemoattractant protein-1 is excreted in excessive amounts in the urine of patients with lupus nephritis. Lab Investig 73:804–809PubMed Noris M, Bernasconi S, Casiraghi F et al (1995) Monocyte chemoattractant protein-1 is excreted in excessive amounts in the urine of patients with lupus nephritis. Lab Investig 73:804–809PubMed
30.
Zurück zum Zitat Amoura Z, Combadiere C, Faure S et al (2003) Roles of CCR2 and CXCR3 in the T cell-mediated response occurring during lupus flares. Arthritis Rheum 48:3487–3496. doi:10.1002/art.11350 PubMed Amoura Z, Combadiere C, Faure S et al (2003) Roles of CCR2 and CXCR3 in the T cell-mediated response occurring during lupus flares. Arthritis Rheum 48:3487–3496. doi:10.​1002/​art.​11350 PubMed
31.
Zurück zum Zitat Rafei M, Hsieh J, Fortier S et al (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112:4991–4998. doi:10.1182/blood-2008-07-166892 PubMed Rafei M, Hsieh J, Fortier S et al (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112:4991–4998. doi:10.​1182/​blood-2008-07-166892 PubMed
33.
Zurück zum Zitat Kantele A, Kantele JM, Savilahti E et al (1997) Homing potentials of circulating lymphocytes in humans depend on the site of activation: oral, but not parenteral, typhoid vaccination induces circulating antibody-secreting cells that all bear homing receptors directing them to the gut. J Immunol 158:574–579PubMed Kantele A, Kantele JM, Savilahti E et al (1997) Homing potentials of circulating lymphocytes in humans depend on the site of activation: oral, but not parenteral, typhoid vaccination induces circulating antibody-secreting cells that all bear homing receptors directing them to the gut. J Immunol 158:574–579PubMed
34.
Zurück zum Zitat Medina F, Segundo C, Campos-Caro A et al (2002) The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 99:2154–2161PubMed Medina F, Segundo C, Campos-Caro A et al (2002) The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 99:2154–2161PubMed
35.
Zurück zum Zitat Arce S, Luger E, Muehlinghaus G et al (2004) CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J Leukoc Biol 75:1022–1028. doi:10.1189/jlb.0603279 PubMed Arce S, Luger E, Muehlinghaus G et al (2004) CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J Leukoc Biol 75:1022–1028. doi:10.​1189/​jlb.​0603279 PubMed
39.
Zurück zum Zitat Starke C, Frey S, Wellmann U et al (2011) High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur J Immunol 41:2107–2112. doi:10.1002/eji.201041315 PubMed Starke C, Frey S, Wellmann U et al (2011) High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur J Immunol 41:2107–2112. doi:10.​1002/​eji.​201041315 PubMed
41.
Zurück zum Zitat Szyszko EA, Brokstad KA, Oijordsbakken G et al (2011) Salivary glands of primary Sjögren’s syndrome patients express factors vital for plasma cell survival. Arthritis Res Ther 13:R2. doi:10.1186/ar3220 PubMedCentralPubMed Szyszko EA, Brokstad KA, Oijordsbakken G et al (2011) Salivary glands of primary Sjögren’s syndrome patients express factors vital for plasma cell survival. Arthritis Res Ther 13:R2. doi:10.​1186/​ar3220 PubMedCentralPubMed
42.
44.
Zurück zum Zitat Belnoue E, Pihlgren M, McGaha TL et al (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111:2755–2764. doi:10.1182/blood-2007-09-110858 PubMed Belnoue E, Pihlgren M, McGaha TL et al (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111:2755–2764. doi:10.​1182/​blood-2007-09-110858 PubMed
45.
Zurück zum Zitat Mohr E, Serre K, Manz RA et al (2009) Dendritic cells and monocyte/macrophages that create the IL-6/APRIL-rich lymph node microenvironments where plasmablasts mature. J Immunol 182:2113PubMed Mohr E, Serre K, Manz RA et al (2009) Dendritic cells and monocyte/macrophages that create the IL-6/APRIL-rich lymph node microenvironments where plasmablasts mature. J Immunol 182:2113PubMed
47.
49.
Zurück zum Zitat Macpherson AJ, Gatto D, Sainsbury E et al (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226PubMed Macpherson AJ, Gatto D, Sainsbury E et al (2000) A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226PubMed
50.
51.
Zurück zum Zitat Di Niro R, Mesin L, Zheng N-Y et al (2012) High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med 18:441–445. doi:10.1038/nm.2656 PubMed Di Niro R, Mesin L, Zheng N-Y et al (2012) High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat Med 18:441–445. doi:10.​1038/​nm.​2656 PubMed
52.
Zurück zum Zitat Ludwig RJ, Recke A, Bieber K et al (2011) Generation of antibodies of distinct subclasses and specificity is linked to H2s in an active mouse model of epidermolysis bullosa acquisita. J Invest Dermatol 131:167–176. doi:10.1038/jid.2010.248 PubMed Ludwig RJ, Recke A, Bieber K et al (2011) Generation of antibodies of distinct subclasses and specificity is linked to H2s in an active mouse model of epidermolysis bullosa acquisita. J Invest Dermatol 131:167–176. doi:10.​1038/​jid.​2010.​248 PubMed
54.
Zurück zum Zitat Fagarasan S, Kinoshita K, Muramatsu M et al (2001) In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413:639–643. doi:10.1038/35098100 PubMed Fagarasan S, Kinoshita K, Muramatsu M et al (2001) In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413:639–643. doi:10.​1038/​35098100 PubMed
55.
Zurück zum Zitat Fritz JH, Rojas OL, Simard N et al (2012) Acquisition of a multifunctional IgA + plasma cell phenotype in the gut. Nature 481:199–203. doi:10.1038/nature10698 Fritz JH, Rojas OL, Simard N et al (2012) Acquisition of a multifunctional IgA + plasma cell phenotype in the gut. Nature 481:199–203. doi:10.​1038/​nature10698
57.
59.
Zurück zum Zitat Mesin L, Di Niro R, Thompson KM et al (2011) Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J Immunol 187:2867–2874. doi:10.4049/jimmunol.1003181 PubMed Mesin L, Di Niro R, Thompson KM et al (2011) Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J Immunol 187:2867–2874. doi:10.​4049/​jimmunol.​1003181 PubMed
60.
Zurück zum Zitat Youngman KR, Franco MA, Kuklin NA et al (2002) Correlation of tissue distribution, developmental phenotype, and intestinal homing receptor expression of antigen-specific B cells during the murine anti-rotavirus immune response. J Immunol 168:2173–2181PubMed Youngman KR, Franco MA, Kuklin NA et al (2002) Correlation of tissue distribution, developmental phenotype, and intestinal homing receptor expression of antigen-specific B cells during the murine anti-rotavirus immune response. J Immunol 168:2173–2181PubMed
61.
Zurück zum Zitat Manz RA, Arce S, Cassese G et al (2002) Humoral immunity and long-lived plasma cells. Curr Opin Immunol 14:517–521PubMed Manz RA, Arce S, Cassese G et al (2002) Humoral immunity and long-lived plasma cells. Curr Opin Immunol 14:517–521PubMed
63.
Zurück zum Zitat Neubert K, Meister S, Moser K et al (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14:748–755. doi:10.1038/nm1763 PubMed Neubert K, Meister S, Moser K et al (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14:748–755. doi:10.​1038/​nm1763 PubMed
64.
Zurück zum Zitat Bontscho J, Schreiber A, Manz RA et al (2011) Myeloperoxidase-specific plasma cell depletion by bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J Am Soc Nephrol 22:336–348. doi:10.1681/ASN.2010010034 PubMedCentralPubMed Bontscho J, Schreiber A, Manz RA et al (2011) Myeloperoxidase-specific plasma cell depletion by bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J Am Soc Nephrol 22:336–348. doi:10.​1681/​ASN.​2010010034 PubMedCentralPubMed
65.
Zurück zum Zitat Gomez AM, Vrolix K, Martínez-Martínez P et al (2011) Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol 186:2503–2513. doi:10.4049/jimmunol.1002539 PubMed Gomez AM, Vrolix K, Martínez-Martínez P et al (2011) Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol 186:2503–2513. doi:10.​4049/​jimmunol.​1002539 PubMed
66.
Zurück zum Zitat Kasperkiewicz M, Müller R, Manz R et al (2011) Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets. Blood 117:6135PubMed Kasperkiewicz M, Müller R, Manz R et al (2011) Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets. Blood 117:6135PubMed
67.
69.
Zurück zum Zitat Baltimore D, Boldin MP, O’Connell RM et al (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845. doi:10.1038/ni.f.209 PubMed Baltimore D, Boldin MP, O’Connell RM et al (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845. doi:10.​1038/​ni.​f.​209 PubMed
70.
77.
80.
Zurück zum Zitat Löffler D, Brocke-Heidrich K, Pfeifer G et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333. doi:10.1182/blood-2007-03-081133 PubMed Löffler D, Brocke-Heidrich K, Pfeifer G et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333. doi:10.​1182/​blood-2007-03-081133 PubMed
82.
86.
Zurück zum Zitat Stanczyk J, Pedrioli DML, Brentano F et al (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58:1001–1009. doi:10.1002/art.23386 PubMed Stanczyk J, Pedrioli DML, Brentano F et al (2008) Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 58:1001–1009. doi:10.​1002/​art.​23386 PubMed
88.
Zurück zum Zitat Tang Y, Luo X, Cui H et al (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075. doi:10.1002/art.24436 PubMed Tang Y, Luo X, Cui H et al (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075. doi:10.​1002/​art.​24436 PubMed
89.
Zurück zum Zitat Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438:685–689PubMed Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438:685–689PubMed
94.
Zurück zum Zitat Mizoguchi A, Bhan AK (2006) A case for regulatory B cells. J Immunol 176:705–710PubMed Mizoguchi A, Bhan AK (2006) A case for regulatory B cells. J Immunol 176:705–710PubMed
96.
Zurück zum Zitat Fillatreau S, Sweenie CH, McGeachy MJ et al (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950. doi:10.1038/ni833 PubMed Fillatreau S, Sweenie CH, McGeachy MJ et al (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950. doi:10.​1038/​ni833 PubMed
99.
Zurück zum Zitat Rafei M, Hsieh J, Zehntner S et al (2009) A granulocyte-macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat Med 15:1038–1045. doi:10.1038/nm.2003 PubMed Rafei M, Hsieh J, Zehntner S et al (2009) A granulocyte-macrophage colony-stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat Med 15:1038–1045. doi:10.​1038/​nm.​2003 PubMed
100.
102.
Zurück zum Zitat Otsuki T, Yata K, Sakaguchi H et al (2002) IL-10 in myeloma cells. Leuk Lymphoma 43:969–974PubMed Otsuki T, Yata K, Sakaguchi H et al (2002) IL-10 in myeloma cells. Leuk Lymphoma 43:969–974PubMed
Metadaten
Titel
Plasma cells in immunopathology: concepts and therapeutic strategies
verfasst von
Benjamin Tiburzy
Upasana Kulkarni
Anja Erika Hauser
Melanie Abram
Rudolf Armin Manz
Publikationsdatum
01.05.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 3/2014
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-014-0426-8

Weitere Artikel der Ausgabe 3/2014

Seminars in Immunopathology 3/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.