Skip to main content
Log in

Immunometabolism, pregnancy, and nutrition

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The emerging field of immunometabolism has substantially progressed over the last years and provided pivotal insights into distinct metabolic regulators and reprogramming pathways of immune cell populations in various immunological settings. However, insights into immunometabolic reprogramming in the context of reproduction are still enigmatic. During pregnancy, the maternal immune system needs to actively adapt to the presence of the fetal antigens, i.e., by functional modifications of distinct innate immune cell subsets, the generation of regulatory T cells, and the suppression of an anti-fetal effector T cell response. Considering that metabolic pathways have been shown to affect the functional role of such immune cells in a number of settings, we here review the potential role of immunometabolism with regard to the molecular and cellular mechanisms necessary for successful reproduction. Since immunometabolism holds the potential for a therapeutic approach to alter the course of immune diseases, we further highlight how a targeted metabolic reprogramming of immune cells may be triggered by maternal anthropometric or nutritional aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18:1754–1767

    Article  CAS  PubMed  Google Scholar 

  2. Frolova AI, Moley KH (2011) Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT1 in uterine receptivity. Endocrinology 152:2123–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kommagani R, Szwarc MM, Kovanci E et al (2013) Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet 9:e1003900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Murdoch RN (1987) Glycolysis in the mouse uterus during the early post-implantation stages of pregnancy and the effects of acute doses of ethanol. Teratology 35:169–176

    Article  CAS  PubMed  Google Scholar 

  5. Krawczyk CM, Holowka T, Sun J et al (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Everts B, Amiel E, Huang SC et al (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol 15:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodriguez-Prados JC, Traves PG, Cuenca J et al (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185:605–614

    Article  CAS  PubMed  Google Scholar 

  8. Donnelly RP, Loftus RM, Keating SE et al (2014) mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol 193:4477–4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Michalek RD, Gerriets VA, Jacobs SR et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gubser PM, Bantug GR, Razik L et al (2013) Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol 14:1064–1072

    Article  CAS  PubMed  Google Scholar 

  11. Shi LZ, Wang R, Huang G et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doughty CA, Bleiman BF, Wagner DJ et al (2006) Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107:4458–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huynh A, DuPage M, Priyadharshini B et al (2015) Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol 16:188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shrestha S, Yang K, Guy C et al (2015) Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol 16:178–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei J, Long L, Yang K et al (2016) Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 17:277–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Sullivan D, van der Windt GJ, Huang SC et al (2014) Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41:75–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Infantino V, Convertini P, Cucci L et al (2011) The mitochondrial citrate carrier: a new player in inflammation. Biochem J 438:433–436

    Article  CAS  PubMed  Google Scholar 

  18. Berod L, Friedrich C, Nandan A et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20:1327–1333

    Article  CAS  PubMed  Google Scholar 

  19. Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerriets VA, Kishton RJ, Nichols AG et al (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 125:194–207

    Article  PubMed  Google Scholar 

  21. Posokhova EN, Khoshchenko OM, Chasovskikh MI et al (2008) Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors. Biochemistry (Mosc) 73:296–304

    Article  CAS  Google Scholar 

  22. Wang C, Yosef N, Gaublomme J et al (2015) CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163:1413–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carr EL, Kelman A, GS W et al (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185:1037–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cobbold SP, Adams E, Farquhar CA et al (2009) Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A 106:12055–12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshida R, Imanishi J, Oku T et al (1981) Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc Natl Acad Sci U S A 78:129–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zuo RJ, XW G, Qi QR et al (2015) Warburg-like glycolysis and lactate shuttle in mouse decidua during early pregnancy. J Biol Chem 290:21280–21291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frolova AI, Moley KH (2011) Glucose transporters in the uterus: an analysis of tissue distribution and proposed physiological roles. Reproduction 142:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim JY, Song H, Kim H et al (2009) Transcriptional profiling with a pathway-oriented analysis identifies dysregulated molecular phenotypes in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab 94:1416–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frolova AI, O’Neill K, Moley KH (2011) Dehydroepiandrosterone inhibits glucose flux through the pentose phosphate pathway in human and mouse endometrial stromal cells, preventing decidualization and implantation. Mol Endocrinol 25:1444–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. PrabhuDas M, Bonney E, Caron K et al (2015) Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol 16:328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arck PC, Hecher K (2013) Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med 19:548–556

    Article  CAS  PubMed  Google Scholar 

  32. Apps R, Murphy SP, Fernando R et al (2009) Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127:26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madeja Z, Yadi H, Apps R et al (2011) Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth. Proc Natl Acad Sci U S A 108:4012–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blois SM, Ilarregui JM, Tometten M et al (2007) A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med 13:1450–1457

    Article  CAS  PubMed  Google Scholar 

  35. Nancy P, Tagliani E, Tay CS et al (2012) Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 336:1317–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inada K, Shima T, Ito M et al (2015) Helios-positive functional regulatory T cells are decreased in decidua of miscarriage cases with normal fetal chromosomal content. J Reprod Immunol 107:10–19

    Article  CAS  PubMed  Google Scholar 

  37. Clark DA (2016) The importance of being a regulatory T cell in pregnancy. J Reprod Immunol 116:60–69

    Article  CAS  PubMed  Google Scholar 

  38. Robertson SA, Guerin LR, Moldenhauer LM et al (2009) Activating T regulatory cells for tolerance in early pregnancy—the contribution of seminal fluid. J Reprod Immunol 83:109–116

    Article  CAS  PubMed  Google Scholar 

  39. Aluvihare VR, Kallikourdis M, Betz AG, Regulatory T (2004) Cells mediate maternal tolerance to the fetus. Nat Immunol 5:266–271

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki Y, Sakai M, Miyazaki S et al (2004) Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 10:347–353

    Article  CAS  PubMed  Google Scholar 

  41. Tilburgs T, Roelen DL, van der Mast BJ et al (2008) Evidence for a selective migration of fetus-specific CD4+CD25 bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J Immunol 180:5737–5745

    Article  CAS  PubMed  Google Scholar 

  42. Shima T, Sasaki Y, Itoh M et al (2010) Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J Reprod Immunol 85:121–129

    Article  CAS  PubMed  Google Scholar 

  43. Arck P, Solano ME, Walecki M et al (2014) The immune privilege of testis and gravid uterus: same difference? Mol Cell Endocrinol 382:509–520

    Article  CAS  PubMed  Google Scholar 

  44. Rowe JH, Ertelt JM, Xin L et al (2012) Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tilburgs T, Scherjon SA, van der Mast BJ et al (2009) Fetal-maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells. J Reprod Immunol 82:148–157

    Article  CAS  PubMed  Google Scholar 

  46. Wang WJ, Liu FJ, HM Q et al (2013) Regulation of the expression of Th17 cells and regulatory T cells by IL-27 in patients with unexplained early recurrent miscarriage. J Reprod Immunol 99:39–45

    Article  CAS  PubMed  Google Scholar 

  47. Erlebacher A, Vencato D, Price KA et al (2007) Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J Clin Invest 117:1399–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moldenhauer LM, Diener KR, Thring DM et al (2009) Cross-presentation of male seminal fluid antigens elicits T cell activation to initiate the female immune response to pregnancy. J Immunol 182:8080–8093

    Article  CAS  PubMed  Google Scholar 

  49. Kammerer U, Schoppet M, McLellan AD et al (2000) Human decidua contains potent immunostimulatory CD83(+) dendritic cells. Am J Pathol 157:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blois SM, Alba Soto CD, Tometten M et al (2004) Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol Reprod 70:1018–1023

    Article  CAS  PubMed  Google Scholar 

  51. Krey G, Frank P, Shaikly V et al (2008) In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice. J Mol Med (Berl) 86:999–1011

    Article  Google Scholar 

  52. Plaks V, Birnberg T, Berkutzki T et al (2008) Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 118:3954–3965

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Faas MM, de Vos P, Uterine NK (2017) Cells and macrophages in pregnancy. Placenta

  54. Cartwright JE, James-Allan L, Buckley RJ et al (2017) The role of decidual NK cells in pregnancies with impaired vascular remodelling. J Reprod Immunol 119:81–84

    Article  CAS  PubMed  Google Scholar 

  55. Ratsep MT, Felker AM, Kay VR et al (2015) Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction 149:R91–102

    Article  CAS  PubMed  Google Scholar 

  56. Evans J, Salamonsen LA, Winship A et al (2016) Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol 12:654–667

    Article  CAS  PubMed  Google Scholar 

  57. Engler JB, Kursawe N, Solano ME et al (2017) Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A 114:E181–E190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thiele K, Lydon JP, DeMayo FJ et al (2016) Specific deletion of the progesterone receptor on CD11c dendritic cells reveals a progesterone-DC-crosstalk necessary to sustain fetal development. J Reprod Immunol 115:43–43

    Article  Google Scholar 

  59. Blois SM, Kammerer U, Alba Soto C et al (2007) Dendritic cells: key to fetal tolerance? Biol Reprod 77:590–598

    Article  CAS  PubMed  Google Scholar 

  60. Blois SM, Joachim R, Kandil J et al (2004) Depletion of CD8+ cells abolishes the pregnancy protective effect of progesterone substitution with dydrogesterone in mice by altering the Th1/Th2 cytokine profile. J Immunol 172:5893–5899

    Article  CAS  PubMed  Google Scholar 

  61. Hao S, Zhao J, Zhou J et al (2007) Modulation of 17beta-estradiol on the number and cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int Immunopharmacol 7:1765–1775

    Article  CAS  PubMed  Google Scholar 

  62. Laskarin G, Tokmadzic VS, Strbo N et al (2002) Progesterone induced blocking factor (PIBF) mediates progesterone induced suppression of decidual lymphocyte cytotoxicity. Am J Reprod Immunol 48:201–209

    Article  PubMed  Google Scholar 

  63. Fournier T, Guibourdenche J, Evain-Brion D (2015) Review: hCGs: different sources of production, different glycoforms and functions. Placenta 36(Suppl 1):S60–S65

    Article  CAS  PubMed  Google Scholar 

  64. Khil LY, Jun HS, Kwon H et al (2007) Human chorionic gonadotropin is an immune modulator and can prevent autoimmune diabetes in NOD mice. Diabetologia 50:2147–2155

    Article  CAS  PubMed  Google Scholar 

  65. Schumacher A, Heinze K, Witte J et al (2013) Human chorionic gonadotropin as a central regulator of pregnancy immune tolerance. J Immunol 190:2650–2658

    Article  CAS  PubMed  Google Scholar 

  66. Schumacher A, Brachwitz N, Sohr S et al (2009) Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal Interface during early human pregnancy. J Immunol 182:5488–5497

    Article  CAS  PubMed  Google Scholar 

  67. Vacca P, Montaldo E, Croxatto D et al (2015) Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunol 8:254–264

    Article  CAS  PubMed  Google Scholar 

  68. Lundell AC, Nordstrom I, Andersson K et al (2017) IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep 7:39904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Muzzio DO, Soldati R, Ehrhardt J et al (2014) B cell development undergoes profound modifications and adaptations during pregnancy in mice. Biol Reprod 91:115

    Article  PubMed  CAS  Google Scholar 

  70. Huang B, Faucette AN, Pawlitz MD et al (2017) Interleukin-33-induced expression of PIBF1 by decidual B cells protects against preterm labor. Nat Med 23:128–135

    Article  CAS  PubMed  Google Scholar 

  71. Mor G, Aldo P, Alvero AB (2017) The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol 17:469–482

    Article  CAS  PubMed  Google Scholar 

  72. Frauwirth KA, Riley JL, Harris MH et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777

    Article  CAS  PubMed  Google Scholar 

  73. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Papathanassoglou E, El-Haschimi K, Li XC et al (2006) Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol 176:7745–7752

    Article  CAS  PubMed  Google Scholar 

  75. van der Windt GJ, Everts B, Chang CH et al (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36:68–78

    Article  PubMed  CAS  Google Scholar 

  76. Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rath M, Muller I, Kropf P et al (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Murray PJ (2016) Amino acid auxotrophy as a system of immunological control nodes. Nat Immunol 17:132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Monticelli LA, Buck MD, Flamar AL et al (2016) Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat Immunol 17:656–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Locksley RM (2010) Asthma and allergic inflammation. Cell 140:777–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Munn DH, Shafizadeh E, Attwood JT et al (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee GK, Park HJ, Macleod M et al (2002) Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107:452–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Palsson-McDermott EM, Curtis AM, Goel G et al (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21:65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  86. Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brown EJ, Albers MW, Shin TB et al (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  CAS  PubMed  Google Scholar 

  88. Gabardi S, Baroletti SA (2010) Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy 30:1044–1056

    Article  CAS  PubMed  Google Scholar 

  89. Mayer CT, Berod L, Sparwasser T (2012) Layers of dendritic cell-mediated T cell tolerance, their regulation and the prevention of autoimmunity. Front Immunol 3:183

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zeng H, Yang K, Cloer C et al (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499:485–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Procaccini C, Carbone F, Di Silvestre D et al (2016) The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 44:406–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beier UH, Angelin A, Akimova T et al (2015) Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. FASEB J 29:2315–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Almeida L, Lochner M, Berod L et al (2016) Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 28:514–524

    Article  CAS  PubMed  Google Scholar 

  94. Burzyn D, Benoist C, Mathis D, Regulatory T (2013) Cells in nonlymphoid tissues. Nat Immunol 14:1007–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Newton R, Priyadharshini B, Turka LA (2016) Immunometabolism of regulatory T cells. Nat Immunol 17:618–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Procaccini C, De Rosa V, Galgani M et al (2010) An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33:929–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yin Y, Choi SC, Xu Z et al (2015) Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 7:274ra218

    Article  CAS  Google Scholar 

  98. Yang Z, Shen Y, Oishi H et al (2016) Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med 8:331ra338

    Google Scholar 

  99. Bednarski JJ, Warner RE, Rao T et al (2003) Attenuation of autoimmune disease in Fas-deficient mice by treatment with a cytotoxic benzodiazepine. Arthritis Rheum 48:757–766

    Article  CAS  PubMed  Google Scholar 

  100. Sun Y, Tian T, Gao J et al (2016) Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 292:58–67

    Article  CAS  PubMed  Google Scholar 

  101. Gatza E, Wahl DR, Opipari AW et al (2011) Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med 3:67ra68

    Article  CAS  Google Scholar 

  102. Lee CF, Lo YC, Cheng CH et al (2015) Preventing allograft rejection by targeting immune metabolism. Cell Rep 13:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nguyen HD, Chatterjee S, Haarberg KM et al (2016) Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest 126:1337–1352

    Article  PubMed  PubMed Central  Google Scholar 

  104. Glick GD, Rossignol R, Lyssiotis CA et al (2014) Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J Pharmacol Exp Ther 351:298–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cohen S, Danzaki K, MacIver NJ (2017) Nutritional effects on T-cell immunometabolism. Eur J Immunol 47:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Procaccini C, De Rosa V, Galgani M et al (2012) Leptin-induced mTOR activation defines a specific molecular and transcriptional signature controlling CD4+ effector T cell responses. J Immunol 189:2941–2953

    Article  CAS  PubMed  Google Scholar 

  107. Wilk S, Scheibenbogen C, Bauer S, Jenke A, Rother M, Guerreiro M, Kudernatsch R, Goerner N, Poller W, Elligsen-Merkel D, Utku N, Magrane J, Volk HD, Skurk C (2011) Adiponectin is a negative regulator of antigen-activated T cells. Eur J Immunol 41:2323–2332

  108. Piccio L, Cantoni C, Henderson JG et al (2013) Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur J Immunol 43:2089–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dobner J, Kaser S (2017) Body mass index and the risk of infection—from underweight to obesity. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2017.02.013

  110. Ahima RS, Prabakaran D, Mantzoros C et al (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382:250–252

    Article  CAS  PubMed  Google Scholar 

  111. Balsells M, Garcia-Patterson A, Corcoy R (2016) Systematic review and meta-analysis on the association of prepregnancy underweight and miscarriage. Eur J Obstet Gynecol Reprod Biol 207:73–79

    Article  PubMed  Google Scholar 

  112. Huh JY, Park YJ, Ham M et al (2014) Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Molecules and Cells 37:365–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Yang H, Youm YH, Vandanmagsar B et al (2010) Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 185:1836–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nishimura S, Manabe I, Nagasaki M et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920

    Article  CAS  PubMed  Google Scholar 

  115. Han JM, Patterson SJ, Speck M et al (2014) Insulin inhibits IL-10-mediated regulatory T cell function: implications for obesity. J Immunol 192:623 LP–623629

    Article  CAS  Google Scholar 

  116. Mattioli B, Straface E, Quaranta MG et al (2005) Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol 174:6820–6828

    Article  CAS  PubMed  Google Scholar 

  117. Lauterbach MA, Wunderlich FT (2017) Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch 469:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rocha VZ, Folco EJ, Sukhova G et al (2008) Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res 103:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Keane KN, Calton EK, Carlessi R et al. (2017) The bioenergetics of inflammation: insights into obesity and type 2 diabetes. Eur J Clin Nutr

  120. Matjila MJ, Hoffman A, van der Spuy ZM (2017) Medical conditions associated with recurrent miscarriage—is BMI the tip of the iceberg? Eur J Obstet Gynecol Reprod Biol 214:91–96

    Article  PubMed  Google Scholar 

  121. Bhandari HM, Tan BK, Quenby S (2016) Superfertility is more prevalent in obese women with recurrent early pregnancy miscarriage. BJOG 123:217–222

    Article  CAS  PubMed  Google Scholar 

  122. Boonstra A, Barrat FJ, Crain C et al (2001) 1α,25-dihydroxyvitamin D3 has a direct effect on naive CD4+ T Cells to enhance the development of Th2 cells. J Immunol 167:4974 LP–4974980

    Article  Google Scholar 

  123. Gorman S, Kuritzky LA, Judge MA et al (2007) Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+ CD25+ cells in the draining lymph nodes. J Immunol 179:6273–6283

    Article  CAS  PubMed  Google Scholar 

  124. Kinoshita M, Kayama H, Kusu T et al (2012) Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. J Immunol 189:2869–2878

    Article  CAS  PubMed  Google Scholar 

  125. Griffin MD, Lutz WH, Phan VA et al (2000) Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 270:701–708

    Article  CAS  PubMed  Google Scholar 

  126. Griffin MD, Lutz W, Phan VA et al (2001) Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci U S A 98:6800–6805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Troen AM, Mitchell B, Sorensen B et al (2006) Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr 136:189–194

    Article  CAS  PubMed  Google Scholar 

  128. Shaat N, Ignell C, Katsarou A et al. (2017) Glucose homeostasis, beta cell function, and insulin resistance in relation to vitamin D status after gestational diabetes mellitus. Acta Obstet Gynecol Scand. n/a-n/a

  129. Lu M, Xu Y, Lv L et al (2016) Association between vitamin D status and the risk of gestational diabetes mellitus: a meta-analysis. Arch Gynecol Obstet 293:959–966

    Article  CAS  PubMed  Google Scholar 

  130. Smith TA, Kirkpatrick DR, Kovilam O et al (2015) Immunomodulatory role of vitamin D in the pathogenesis of preeclampsia. Expert Rev Clin Immunol 11:1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Murthi P, Yong HEJ, Ngyuen TPH et al. (2016) Role of the placental vitamin D receptor in modulating feto-placental growth in fetal growth restriction and preeclampsia-affected pregnancies. In 43–43

  132. McKay JA, Xie L, Adriaens M et al. (2016) Organ-specific gene expression changes in the fetal liver and placenta in response to maternal folate depletion. Nutrients 8.

  133. Lehr S, Hartwig S, Sell H (2012) Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. PROTEOMICS – Clinical Applications 6:91–101

    Article  CAS  PubMed  Google Scholar 

  134. Blüher M, Mantzoros CS (2015) From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 64:131–145

    Article  PubMed  CAS  Google Scholar 

  135. Perez-Perez A, Vilarino-Garcia T, Fernandez-Riejos P et al. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev 2017:

  136. Macdonald SPJ, Bosio E, Neil C et al (2017) Resistin and NGAL are associated with inflammatory response, endothelial activation and clinical outcomes in sepsis. Inflamm Res 66:611–619

    Article  CAS  PubMed  Google Scholar 

  137. White RT, Damm D, Hancock N et al (1992) Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem 267:9210–9213

    CAS  PubMed  Google Scholar 

  138. Procaccini C, Galgani M, De Rosa V et al (2012) Intracellular metabolic pathways control immune tolerance. Trends Immunol 33:1–7

    Article  CAS  PubMed  Google Scholar 

  139. Mor G, Cardenas I, Abrahams V, Guller S (2011) Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 1221:80–87

  140. Dekel N, Gnainsky Y, Granot I et al (2010) Inflammation and implantation. Am J Reprod Immunol 63:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Malik NM, Carter ND, Murray JF et al (2001) Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology 142:5198–5202

    Article  CAS  PubMed  Google Scholar 

  142. Io M (2009) Weight gain during pregnancy: reexamining the guidelines. National Academies Press, Washington, DC

    Google Scholar 

  143. Gabriel G, Arck PC (2014) Sex, immunity and influenza. J Infect Dis 209(Suppl 3):S93–S99

    Article  PubMed  Google Scholar 

  144. Engels G, Hierweger AM, Hoffmann J et al (2017) Pregnancy-related immune adaptation promotes the emergence of highly virulent H1N1 influenza virus strains in allogenically pregnant mice. Cell Host Microbe 21:321–333

    Article  CAS  PubMed  Google Scholar 

  145. van Riel D, Mittrucker HW, Engels G et al (2016) Influenza pathogenicity during pregnancy in women and animal models. Semin Immunopathol 38:719–726

    Article  PubMed  Google Scholar 

  146. Bapat SP, Myoung Suh J, Fang S et al (2015) Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Feuerer M, Herrero L, Cipolletta D et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Winer DA, Winer S, Shen L et al (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17:610–U134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dahlgren J (2006) Pregnancy and insulin resistance. Metab Syndr Relat Disord 4:149–152

    Article  CAS  PubMed  Google Scholar 

  150. Silha JV, Krsek M, Skrha JV et al (2003) Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol 149:331–335

    Article  CAS  PubMed  Google Scholar 

  151. Steppan CM, Bailey ST, Bhat S et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  CAS  PubMed  Google Scholar 

  152. Degawa-Yamauchi M, Bovenkerk JE, Juliar BE et al (2003) Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab 88:5452–5455

    Article  CAS  PubMed  Google Scholar 

  153. Kuzmicki M, Telejko B, Szamatowicz J et al (2009) High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol Endocrinol 25:258–263

    Article  CAS  PubMed  Google Scholar 

  154. Siddiqui K, P George T. Resistin (2017) Role in development of gestational diabetes mellitus. Biomark Med. 11:

  155. Lobo TF, Torloni MR, Gueuvoghlanian-Silva BY et al (2013) Resistin concentration and gestational diabetes: a systematic review of the literature. J Reprod Immunol 97:120–127

    Article  CAS  PubMed  Google Scholar 

  156. Sivakumar K, Bari MF, Adaikalakoteswari A et al (2013) Elevated fetal adipsin/acylation-stimulating protein (ASP) in obese pregnancy: novel placental secretion via Hofbauer cells. J Clin Endocrinol Metab 98:4113–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lo JC, Ljubicic S, Leibiger B et al (2014) Adipsin is an adipokine that improves β cell function in diabetes. Cell 158:41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Henson MC, Swan KF, O'Neil JS (1998) Expression of placental leptin and leptin receptor transcripts in early pregnancy and at term. Obstet Gynecol 92:1020–1028

    CAS  PubMed  Google Scholar 

  159. Hassink SG, de Lancey E, Sheslow DV et al (1997) Placental leptin: an important new growth factor in intrauterine and neonatal development? Pediatrics 100:E1

    Article  CAS  PubMed  Google Scholar 

  160. Cameo P, Bischof P, Calvo JC (2003) Effect of leptin on progesterone, human chorionic gonadotropin, and interleukin-6 secretion by human term trophoblast cells in culture. Biol Reprod 68:472–477

    Article  CAS  PubMed  Google Scholar 

  161. Rice GE (2001) Cytokines and the initiation of parturition. Front Horm Res 27:113–146

    Article  CAS  PubMed  Google Scholar 

  162. Maymo JL, Perez AP, Sanchez-Margalet V et al (2009) Up-regulation of placental leptin by human chorionic gonadotropin. Endocrinology 150:304–313

    Article  CAS  PubMed  Google Scholar 

  163. Cella F, Giordano G, Cordera R (2000) Serum leptin concentrations during the menstrual cycle in normal-weight women: effects of an oral triphasic estrogen-progestin medication. Eur J Endocrinol 142:174–178

    Article  CAS  PubMed  Google Scholar 

  164. Abelenda M, Puerta M (2004) Leptin release is decreased in white adipocytes isolated from progesterone-treated rats. Endocr Res 30:335–342

    Article  CAS  PubMed  Google Scholar 

  165. Zhao M, Chen YH, Chen X, Dong XT, Zhou J, Wang H, Wu SX, Zhang C, Xu DX (2014) Folic acid supplementation during pregnancy protects against lipopolysaccharide-induced neural tube defects in mice. Toxicol Lett 224:201–208

  166. Antony AC (2007) In utero physiology: role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr 85:598S–603S

    CAS  PubMed  Google Scholar 

  167. Maggini S, Wintergerst ES, Beveridge S, Hornig DH (2007) Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 98(Suppl 1):S29–S35

  168. Håberg SE, London SJ, Stigum H, Nafstad P, Nystad W (2009) Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child 94:180–184

  169. Courtemanche C, Elson-Schwab I, Mashiyama ST et al (2004) Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro. J Immunol 173:3186 LP–3183192

    Article  Google Scholar 

  170. Yamaguchi T, Hirota K, Nagahama K et al (2007) Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27:145–159

    Article  CAS  PubMed  Google Scholar 

  171. Who F (2004) Vitamin and mineral requirements in human nutrition, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  172. Caprio M, Infante M, Calanchini M et al (2017) Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat Weight Disord 22:27–41

    Article  PubMed  Google Scholar 

  173. Tamblyn JA, Hewison M, Wagner CL et al (2015) Immunological role of vitamin D at the maternal-fetal interface. J Endocrinol 224:R107–R121

    Article  CAS  PubMed  Google Scholar 

  174. Nunn JD, Katz DR, Barker S et al (1986) Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3. Immunology 59:479–484

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Vanherwegen AS, Gysemans C, Mathieu C (2017) Vitamin D endocrinology on the cross-road between immunity and metabolism. Mol Cell Endocrinol 453:52–67

  176. Alemzadeh R, Kichler J, Babar G et al (2008) Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism 57:183–191

    Article  CAS  PubMed  Google Scholar 

  177. Kaushal M, Magon N, Vitamin D (2013) In pregnancy: a metabolic outlook. Indian J Endocrinol Metab 17:76–82

    Article  PubMed  PubMed Central  Google Scholar 

  178. Diemert A, Lezius S, Pagenkemper M et al (2016) Maternal nutrition, inadequate gestational weight gain and birth weight: results from a prospective birth cohort. BMC Pregnancy Childbirth 16:224

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  180. Intestinal Mucosal WG (1998) Amino acid catabolism. J Nutr 128:1249–1252

    Article  Google Scholar 

  181. Mills C (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32:463–488

    Article  CAS  PubMed  Google Scholar 

  182. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  CAS  PubMed  Google Scholar 

  183. Munder M, Schneider H, Luckner C et al (2006) Suppression of T-cell functions by human granulocyte arginase. Blood 108:1627 LP–1621634

    Article  CAS  Google Scholar 

  184. Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kim JY, Kang JS, Kim HM et al (2009) Inhibition of phenotypic and functional maturation of dendritic cells by manassantin a. J Pharmacol Sci 109:583–592

    Article  CAS  PubMed  Google Scholar 

  186. Simioni PU, Fernandes LGR, Tamashiro WMSC (2016) Downregulation of L-arginine metabolism in dendritic cells induces tolerance to exogenous antigen. Int J Immunopathol Pharmacol 30:44–57

    Article  CAS  Google Scholar 

  187. Greenberg SS, Lancaster JR, Xie J et al (1997) Effects of NO synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats. Am J Physiol—Regul Integr Comp Physiol 273:R1031 LP–R10R1045

    Article  Google Scholar 

  188. Buhimschi IR, Saade G, Chwalisz K et al (1998) The nitric oxide pathway in pre-eclampsia: pathophysiological implications. Hum Reprod Update 4:25–42

    Article  CAS  PubMed  Google Scholar 

  189. Kim YJ, Park HS, Lee HY et al (2006) Reduced l-arginine level and decreased placental eNOS activity in preeclampsia. Placenta 27:438–444

    Article  CAS  PubMed  Google Scholar 

  190. Rytlewski K, Olszanecki R, Lauterbach R et al (2006) Effects of oral L-arginine on the foetal condition and neonatal outcome in preeclampsia: a preliminary report. Basic Clin Pharmacol Toxicol 99:146–152

    Article  CAS  PubMed  Google Scholar 

  191. Rytlewski K, Olszanecki R, Lauterbach R et al (2008) Effects of oral l-arginine on the pulsatility indices of umbilical artery and middle cerebral artery in preterm labor. Eur J Obstet Gynecol Reprod Biol 138:23–28

    Article  CAS  PubMed  Google Scholar 

  192. Brown LD, Green AS, Limesand SW et al (2011) Maternal amino acid supplementation for intrauterine growth restriction. Front biosci (Scholar edition) 3:428–444

    Google Scholar 

  193. Gui S, Jia J, Niu X et al (2013) Arginine supplementation for improving maternal and neonatal outcomes in hypertensive disorder of pregnancy: a systematic review. J Renin-Angiotensin-Aldosterone Syst 15:88–96

    Article  PubMed  CAS  Google Scholar 

  194. Lukaszewski MA, Delahaye F, Vieau D et al (2012) Is the adipose tissue a key target of developmental programming of adult adiposity by maternal undernutrition? Adipocyte 1:64–67

    Article  PubMed  PubMed Central  Google Scholar 

  195. Jaquet D, Gaboriau A, Czernichow P et al (2001) Relatively low serum leptin levels in adults born with intra-uterine growth retardation. Int J Obes Relat Metab Disord 25:491–495

    Article  CAS  PubMed  Google Scholar 

  196. Palou M, Konieczna J, Torrens JM et al (2012) Impaired insulin and leptin sensitivity in the offspring of moderate caloric-restricted dams during gestation is early programmed. J Nutr Biochem 23:1627–1639

    Article  CAS  PubMed  Google Scholar 

  197. Palou M, Priego T, Sanchez J et al (2010) Sexual dimorphism in the lasting effects of moderate caloric restriction during gestation on energy homeostasis in rats is related with fetal programming of insulin and leptin resistance. Nutr Metab (Lond) 7:69

    Article  CAS  Google Scholar 

  198. Vickers MH1, Breier BH, Cutfield WS, Hofman PL, Gluckman PD (2000) Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 279:E83–87

  199. Grasemann C, Herrmann R, Starschinova J et al (2017) Effects of fetal exposure to high-fat diet or maternal hyperglycemia on L-arginine and nitric oxide metabolism in lung. Nutr Diabetes e244:7

    Google Scholar 

  200. Mayor RS, Finch KE, Zehr J, Morselli E, Neinast MD, Frank AP, Hahner LD, Wang J, Rakheja D, Palmer BF, Rosenfeld CR, Savani RC, Clegg DJ (2015) Maternal high-fat diet is associated with impaired fetal lung development. Am J Physiol Lung Cell Mol Physiol 309:L360–368

Download references

Acknowledgments

The writing of this review and reference to the authors’ own work were made possible through funding by the Deutsche Forschungsgemeinschaft (KFO296 and AR232/27-1 to P.C.A. and TH2126/1-1 to K.T.) and Special Funds for Science and Technology Development of Guangdong Province (2017A020214006 to LH.D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Clara Arck.

Additional information

This article is a contribution to the special issue on Dietary Control of Immunometabolism - Guest Editors: Joerg Heeren and Ludger Scheja

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiele, K., Diao, L. & Arck, P.C. Immunometabolism, pregnancy, and nutrition. Semin Immunopathol 40, 157–174 (2018). https://doi.org/10.1007/s00281-017-0660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-017-0660-y

Keywords

Navigation