Skip to main content

Advertisement

Log in

Susceptibility of Pseudomonas aeruginosa Urinary Tract Isolates and Influence of Urinary Tract Conditions on Antibiotic Tolerance

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic human pathogen, which can cause severe urinary tract infections (UTIs). Because of the high intrinsic antibiotic resistance of P. aeruginosa and its ability to develop new resistances during antibiotic treatment, these infections are difficult to eradicate. The antibiotic susceptibility of 32 P. aeruginosa isolates from acute and chronic UTIs were analysed under standardized conditions showing 19% multi-drug resistant strains. Furthermore, the antibiotic tolerance of two P. aeruginosa strains to ciprofloxacin and tobramycin was analysed under urinary tract-relevant conditions which considered nutrient composition, biofilm growth, growth phase, and oxygen concentration. These conditions significantly enhance the antibiotic tolerance of P. aeruginosa up to 6000-fold indicating an adaptation of the bacterium to the specific conditions present in the urinary tract. This reversible phenomenon is possibly due to the increased formation of persister cells and is based on iron limitation in artificial urine. The results suggest that the general high antibiotic resistance of P. aeruginosa urinary tract isolates together with the increasing tolerance of P. aeruginosa grown under urinary tract conditions decrease the efficiency of antibiotic treatment of UTIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MDR:

Multi-drug resistant

MIC:

Minimal inhibitory concentration

UTI:

Urinary tract infection

AUM:

Artificial urine medium

References

  1. Anderl JN, Zahller J, Roe F, Stewart PS (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256

    Article  PubMed  CAS  Google Scholar 

  2. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16

    PubMed  CAS  Google Scholar 

  3. Anwar H, Strap JL, Chen K, Costerton JW (1992) Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Agents Chemother 36:1208–1214

    PubMed  CAS  Google Scholar 

  4. Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664

    Article  PubMed  CAS  Google Scholar 

  5. Breidenstein EB, Khaira BK, Wiegand I, Overhage J, Hancock RE (2008) Complex ciprofloxacin resistome revealed by screening a Pseudomonas aeruginosa mutant library for altered susceptibility. Antimicrob Agents Chemother 52:4486–4491

    Article  PubMed  CAS  Google Scholar 

  6. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24:203–206

    Article  PubMed  CAS  Google Scholar 

  7. Davis RL, Koup JR, Williams-Warren J, Weber A, Smith AL (1985) Pharmacokinetics of three oral formulations of ciprofloxacin. Antimicrob Agents Chemother 28:74–77

    PubMed  CAS  Google Scholar 

  8. de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138

    Article  PubMed  Google Scholar 

  9. Defez C, Fabbro-Peray P, Bouziges N, Gouby A, Mahamat A, Daures JP, Sotto A (2004) Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. J Hosp Infect 57:209–216

    Article  PubMed  CAS  Google Scholar 

  10. Egberts J, Soederhuizen W (1996) Urine samples before dinner are preferable when studying changes in endogenous nitrate production under uncontrolled dietary conditions. Clin Chim Acta 254:141–148

    Article  PubMed  CAS  Google Scholar 

  11. Ellis G, Adatia I, Yazdanpanah M, Makela SK (1998) Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin Biochem 31:195–220

    Article  PubMed  CAS  Google Scholar 

  12. Fung DK, Chan EW, Chin ML, Chan RC (2010) Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob Agents Chemother 54:1082–1093

    Article  PubMed  CAS  Google Scholar 

  13. Giamarellou H (2010) Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int J Antimicrob Agents 36(Suppl 2):S50–S54

    Article  PubMed  CAS  Google Scholar 

  14. Giannakopoulos X, Evangelou A, Kalfakakou V, Grammeniatis E, Papandropoulos I, Charalambopoulos K (1997) Human bladder urine oxygen content: implications for urinary tract diseases. Int Urol Nephrol 29:393–401

    Article  PubMed  CAS  Google Scholar 

  15. Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34:1865–1868

    PubMed  CAS  Google Scholar 

  16. Goto T, Nakame Y, Nishida M, Ohi Y (1999) Bacterial biofilms and catheters in experimental urinary tract infection. Int J Antimicrob Agents 11:227–231 discussion 237–239

    Article  PubMed  CAS  Google Scholar 

  17. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T (2010) An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 59:253–268

    PubMed  CAS  Google Scholar 

  18. Hassett DJ, Cuppoletti J, Trapnell B, Lymar SV, Rowe JJ, Yoon SS, Hilliard GM, Parvatiyar K, Kamani MC, Wozniak DJ, Hwang SH, McDermott TR, Ochsner UA (2002) Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 54:1425–1443

    Article  PubMed  CAS  Google Scholar 

  19. Heydorn A, Ersboll BK, Hentzer M, Parsek MR, Givskov M, Molin S (2000) Experimental reproducibility in flow-chamber biofilms. Microbiology 146:2409–2415

    PubMed  CAS  Google Scholar 

  20. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  Google Scholar 

  21. Hryniewicz K, Szczypa K, Sulikowska A, Jankowski K, Betlejewska K, Hryniewicz W (2001) Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Poland. J Antimicrob Chemother 47:773–780

    Article  PubMed  CAS  Google Scholar 

  22. Kim J, Hahn JS, Franklin MJ, Stewart PS, Yoon J (2009) Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J Antimicrob Chemother 63:129–135

    Article  PubMed  CAS  Google Scholar 

  23. Lambert PA (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 95(Suppl 41):22–26

    PubMed  CAS  Google Scholar 

  24. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    Article  PubMed  CAS  Google Scholar 

  25. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  26. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  PubMed  CAS  Google Scholar 

  27. Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K (2009) Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health 2:101–111

    Article  PubMed  Google Scholar 

  28. Mittal R, Sharma S, Chhibber S, Harjai K (2008) Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections. J Biomed Sci 15:731–741

    Article  PubMed  Google Scholar 

  29. Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624

    PubMed  CAS  Google Scholar 

  30. Obritsch MD, Fish DN, MacLaren R, Jung R (2004) National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 48:4606–4610

    Article  PubMed  CAS  Google Scholar 

  31. Obritsch MD, Fish DN, MacLaren R, Jung R (2005) Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353–1364

    Article  PubMed  CAS  Google Scholar 

  32. Palmer KL, Brown SA, Whiteley M (2007) Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum. J Bacteriol 189:4449–4455

    Article  PubMed  CAS  Google Scholar 

  33. Pascual A, Martinez–Martinez L, Ramirez de Arellano E, Perea EJ (1993) Susceptibility to antimicrobial agents of Pseudomonas aeruginosa attached to siliconized latex urinary catheters. Eur J Clin Microbiol Infect Dis 12:761–765

    Article  PubMed  CAS  Google Scholar 

  34. Plosker GL (2010) Aztreonam lysine for inhalation solution: in cystic fibrosis. Drugs 70:1843–1855

    Article  PubMed  CAS  Google Scholar 

  35. Raja NS, Singh NN (2007) Antimicrobial susceptibility pattern of clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital. J Microbiol Immunol Infect 40:45–49

    PubMed  CAS  Google Scholar 

  36. Rivera-Sanchez R, Delgado-Ochoa D, Flores-Paz RR, Garcia-Jimenez EE, Espinosa-Hernandez R, Bazan-Borges AA, Arriaga-Alba M (2010) Prospective study of urinary tract infection surveillance after kidney transplantation. BMC Infect Dis 10:245

    Article  PubMed  Google Scholar 

  37. Ronald A (2002) The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med 113(Suppl 1A):14S–19S

    Article  PubMed  Google Scholar 

  38. Rossolini GM, Mantengoli E (2005) Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 11(Suppl 4):17–32

    Article  PubMed  CAS  Google Scholar 

  39. Saha R, Jain S, Kaur IR (2010) Metallo beta-lactamase producing pseudomonas species—a major cause of concern among hospital associated urinary tract infection. J Indian Med Assoc 108:344–348

    PubMed  Google Scholar 

  40. Shigemura K, Arakawa S, Sakai Y, Kinoshita S, Tanaka K, Fujisawa M (2006) Complicated urinary tract infection caused by Pseudomonas aeruginosa in a single institution (1999–2003). Int J Urol 13:538–542

    Article  PubMed  Google Scholar 

  41. Silley P, Griffiths JW, Monsey D, Harris AM (1990) Mode of action of GR69153, a novel catechol-substituted cephalosporin, and its interaction with the tonB-dependent iron transport system. Antimicrob Agents Chemother 34:1806–1808

    PubMed  CAS  Google Scholar 

  42. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  PubMed  CAS  Google Scholar 

  43. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  PubMed  CAS  Google Scholar 

  44. Tenke P, Kovacs B, Jackel M, Nagy E (2006) The role of biofilm infection in urology. World J Urol 24:13–20

    Article  PubMed  CAS  Google Scholar 

  45. Tielen P, Narten M, Rosin N, Biegler I, Haddad I, Hogardt M, Neubauer R, Schobert M, Wiehlmann L, Jahn D (2010) Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int J Med Microbiol 301:282–292

    Article  PubMed  Google Scholar 

  46. Tielen P, Rosenau F, Wilhelm S, Jaeger KE, Flemming HC, Wingender J (2010) Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiol 156:2239–2252

    Article  CAS  Google Scholar 

  47. Tuomanen E, Durack DT, Tomasz A (1986) Antibiotic tolerance among clinical isolates of bacteria. Antimicrob Agents Chemother 30:521–527

    PubMed  CAS  Google Scholar 

  48. van Delden C (2004) Virulence factors in Pseudomonas aeruginosa. In: Ramos JL (ed) Pseudomonas. Kluwer Academics/Plenum Publisher, New York, pp 3–46

    Chapter  Google Scholar 

  49. van Poppel H, Chysky V, Hullmann R, Baert L (1988) Clinical experience with ciprofloxacin in the treatment of urinary tract infections: a review. Infection 16:337–344

    Article  PubMed  Google Scholar 

  50. Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576

    Article  PubMed  CAS  Google Scholar 

  51. Wang J, Brown MA, Tam SH, Chan MC, Whitworth JA (1997) Effects of diet on measurement of nitric oxide metabolites. Clin Exp Pharmacol Physiol 24:418–420

    Article  PubMed  CAS  Google Scholar 

  52. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196

    Article  PubMed  CAS  Google Scholar 

  53. Zhao Z, Ma Y, Dai C, Zhao R, Li S, Wu Y, Cao Z, Li W (2009) Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrob Agents Chemother 53:3472–3477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BMBF GenoMik-Plus (Fkz: 0313801H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Tielen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narten, M., Rosin, N., Schobert, M. et al. Susceptibility of Pseudomonas aeruginosa Urinary Tract Isolates and Influence of Urinary Tract Conditions on Antibiotic Tolerance. Curr Microbiol 64, 7–16 (2012). https://doi.org/10.1007/s00284-011-0026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0026-y

Keywords

Navigation