Skip to main content

Advertisement

Log in

Baculovirus-Encoded MicroRNAs: A Brief Overview and Future Prospects

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of non-coding RNAs with ∼22 nucleotides, which are able to regulate various biological processes, including the viral life cycle and host–pathogen interactions. Long primary transcripts (pri-miRNAs) are initially transcribed in nucleus, and subsequently processed by Dicer in cytoplasm to generate mature miRNAs. Baculoviruses consist of large, enveloped, insect-pathogenic viruses with a double-stranded circular DNA genome. Recent studies suggest that baculoviruses encode some miRNAs to manipulate expression regulation of host genes, whereas host modulate viral gene expression via miRNAs to limit viral infection. In the review, we will focus on the biogenesis and functions of miRNAs and the interactions between baculoviruses, insect, and miRNAs. It will be helpful to delve into the related mechanisms of BmNPV-encoded miRNAs that contribute to infection and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  2. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  PubMed  Google Scholar 

  3. Afonso-Grunz F, Müller S (2015) Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72(16):3127–3141

    Article  CAS  PubMed  Google Scholar 

  4. Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4(9):1179–1184

    Article  CAS  PubMed  Google Scholar 

  5. Li H, Zhang Z, Zhou X, Wang Z, Wang G, Han Z (2011) Effects of microRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Mol Biol Rep 38(7):4273–4280

    Article  CAS  PubMed  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Happel C, Ziegelbauer JM (2017) Kaposi’s sarcoma-associated herpesvirus microRNAs target GADD45B to protect infected cells from cell cycle arrest and apoptosis. J Virol 91(3):e02045-16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh CP, Singh J, Nagaraju J (2014) bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochem Mol Biol 49:59–69

    Article  CAS  PubMed  Google Scholar 

  9. Bellutti F, Kauer M, Kneidinger D, Lion T, Klein R (2015) Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection. J Virol 89(3):1608–1627

    Article  CAS  PubMed  Google Scholar 

  10. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  CAS  PubMed  Google Scholar 

  11. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  PubMed  Google Scholar 

  12. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. King VM, Borchert GM (2017) MicroRNA expression: protein participants in microRNA regulation. Methods Mol Biol 1617:27–37

    Article  CAS  PubMed  Google Scholar 

  16. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21(3):452–460

    Article  CAS  PubMed  Google Scholar 

  17. Piedade D, Azevedo-Pereira JM (2016) The role of microRNAs in the pathogenesis of herpesvirus infection. Viruses 8(6):156

    Article  CAS  PubMed Central  Google Scholar 

  18. Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736

    Article  CAS  PubMed  Google Scholar 

  19. Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83(20):10677–10683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jo YH, Patnaik BB, Kang SW, Chae SH, Oh S, Kim DH, Noh MY, Seo GW, Jeong HC, Noh JY, Jeong JE, Hwang HJ, Ko K, Han YS, Lee YS (2013) Analysis of the genome of a Korean isolate of the Pieris rapae granulovirus enabled by its separation from total host genomic DNA by pulse-field electrophoresis. PLoS ONE 8(12):e84183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kharbanda N, Jalali SK, Ojha R, Bhatnagar RK (2015) Temporal expression profiling of novel Spodoptera litura nucleopolyhedrovirus-encoded microRNAs upon infection of Sf21 cells. J Gen Virol 96(Pt 3):688–700

    Article  CAS  PubMed  Google Scholar 

  22. Zhu M, Wang J, Deng R, Xiong P, Liang H, Wang X (2013) A microRNA encoded by Autographa californica nucleopolyhedrovirus regulates expression of viral gene ODV-E25. J Virol 87(23):13029–13034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu M, Wang J, Deng R, Wang X (2016) Functional regulation of an Autographa californica nucleopolyhedrovirus-encoded microRNA, AcMNPV-miR-1, in baculovirus replication. J Virol 90(14):6526–6537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh J, Singh CP, Bhavani A, Nagaraju J (2010) Discovering microRNAs from Bombyx mori nucleopolyhedrosis virus. Virology 407:120–128

    Article  CAS  PubMed  Google Scholar 

  25. Gomi S, Majima K, Maeda S (1999) Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol 80(Pt 5):1323–1337

    Article  CAS  PubMed  Google Scholar 

  26. Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J (2003) Computational and experimental identification of C. elegans microRNAs. Mol Cell 11(5):1253–1263

    Article  CAS  PubMed  Google Scholar 

  27. Li SC, Shiau CK, Lin WC (2008) Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 36(Database issue):D184–D189

    CAS  PubMed  Google Scholar 

  28. Ghosh Z, Mallick B, Chakrabarti J (2009) Cellular versus viral microRNAs in host-virus interaction. Nucleic Acids Res 37(4):1035–1048

    Article  CAS  PubMed  Google Scholar 

  29. Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3(6):375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh CP, Singh J, Nagaraju J (2012) A baculovirus-encoded MicroRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran. J Virol 86(15):7867–7879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Görlich D (1998) Identification of a tRNA-specific nuclear export receptor. Mol Cell 1(3):359–369

    Article  CAS  PubMed  Google Scholar 

  32. Arts GJ, Fornerod M, Mattaj IW (1998) Identification of a nuclear export receptor for tRNA. Curr Biol 8(6):305–314

    Article  CAS  PubMed  Google Scholar 

  33. Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E (2014) Insect prophenoloxidase: the view beyond immunity. Front Physiol 5:252

    PubMed  PubMed Central  Google Scholar 

  34. Qian C, Wang F, Zhu B, Wang L, Wei G, Sun Y, Li S, Liu C (2017) Identification of a hemolin protein from Actias selene mediates immune response to pathogens. Int Immunopharmacol 42:74–80

    Article  CAS  PubMed  Google Scholar 

  35. Sharma N, Singh SK (2016) Implications of non-coding RNAs in viral infections. Rev Med Virol 26(5):356–368

    Article  CAS  PubMed  Google Scholar 

  36. Haasnoot J, Berkhout B (2011) RNAi and cellular miRNAs in infections by mammalian viruses. Methods Mol Biol 721:23–41

    Article  CAS  PubMed  Google Scholar 

  37. Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S (2012) West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res 40(5):2210–2223

    Article  CAS  PubMed  Google Scholar 

  38. Riaz A, Dry I, Levy CS, Hopkins J, Grey F, Shaw DJ, Dalziel RG (2014) Ovine herpesvirus-2-encoded microRNAs target virus genes involved in virus latency. J Gen Virol 95(Pt 2):472–480

    Article  CAS  PubMed  Google Scholar 

  39. Wu P, Qin G, Qian H, Chen T, Guo X (2016) Roles of miR-278-3p in IBP2 regulation and Bombyx mori cytoplasmic polyhedrosis virus replication. Gene 575(2 Pt 1):264–269

    Article  CAS  PubMed  Google Scholar 

  40. Wang M, Tuladhar E, Shen S, Wang H, van Oers MM, Vlak JM, Westenberg M (2010) Specificity of baculovirus P6.9 basic DNA-binding proteins and critical role of the C terminus in virion formation. J Virol 84(17):8821–8828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu P, Han S, Chen T, Qin G, Li L, Guo X (2013) Involvement of microRNAs in infection of silkworm with bombyx mori cytoplasmic polyhedrosis virus (BmCPV). PLoS ONE 8(7):e68209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Zhou Y, Wu J, Zheng P, Li Y, Zheng X, Puthiyakunnon S, Tu Z, Chen XG (2015) The expression profile of Aedes albopictus miRNAs is altered by dengue virus serotype-2 infection. Cell Biosci 5:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Najib A, Kim MS, Choi SH, Kang YJ, Kim KH (2016) Changes in microRNAs expression profile of olive flounder (Paralichthys olivaceus) in response to viral hemorrhagic septicemia virus (VHSV) infection. Fish Shellfish Immunol 51:384–391

    Article  CAS  PubMed  Google Scholar 

  44. Mehrabadi M, Hussain M, Asgari S (2013) MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection. J Gen Virol 94(Pt 6):1385–1397

    Article  CAS  PubMed  Google Scholar 

  45. Shi X, Ran Z, Li S, Yin J, Zhong J (2016) The effect of microRNA bantam on baculovirus AcMNPV infection in vitro and in vivo. Viruses 8(5):136

    Article  CAS  PubMed Central  Google Scholar 

  46. Wu P, Jiang X, Guo X, Li L, Chen T (2016) Genome-wide analysis of differentially expressed microRNA in Bombyx mori infected with nucleopolyhedrosis virus. PLoS ONE 11(11):e0165865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M, Gottwein E, Rajewsky N (2014) Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54(6):1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gallaher AM, Das S, Xiao Z, Andresson T, Kieffer-Kwon P, Happel C, Ziegelbauer J (2013) Proteomic screening of human targets of viral microRNAs reveals functions associated with immune evasion and angiogenesis. PLoS Pathog 9(9):e1003584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hou D, Zhang L, Deng F, Fang W, Wang R, Liu X, Guo L, Rayner S, Chen X, Wang H, Hu Z (2013) Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. J Virol 87(2):829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clem RJ, Passarelli AL (2013) Baculoviruses: sophisticated pathogens of insects. PLoS Pathog 9(11):e1003729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCaskill J, Praihirunkit P, Sharp PM, Buck AH (2015) RNA-mediated degradation of microRNAs: a widespread viral strategy? RNA Biol 12(6):579–585

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (31402016, 81402840); Postdoctoral Research in Jiangsu Province (1501070C), a project supported by the Youth Foundation of Jiangsu University (FCJJ2015028), and Natural Science Foundation of Jiangsu Province of China (BK20130495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Qiu, L. & Li, G. Baculovirus-Encoded MicroRNAs: A Brief Overview and Future Prospects. Curr Microbiol 76, 738–743 (2019). https://doi.org/10.1007/s00284-018-1443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1443-y

Navigation