Skip to main content
Log in

Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare image quality and noise of conventional unenhanced (CU) and virtual unenhanced (VU) images in patients who underwent hepatic dual energy computed tomography (DECT) and to assess potential radiation dose reduction.

Materials and methods

Forty consecutive patients were studied. Mean CU and VU image quality and noise were analyzed by two blinded radiologists using a five-point grade scale. The effective radiation dose of a triple-phase protocol (CU, arterial and DE portal phases) were compared with that of a dual-phase protocol (arterial and DE portal phases).

Results

No significant difference in mean image quality was observed between VU (3.92 ± 0.85) and CU images (4.20 ± 0.72). A significant difference in mean image noise was observed between VU and CU (P < 0.01). The dose reduction achieved by omitting the unenhanced acquisition was 30.47 ± 7.07% (P < 0.01). In 6 patients, a complete VU liver image was not obtained.

Conclusions

VU images can be obtained with similar image quality as CU. This approach favors a reduction in patient’s radiation exposure. Nevertheless, a complete abdominal DECT is possible only in patients with a low body mass index, due technical limitations of the present DECT systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  2. Godoy MCB, Naidich DP, Marchiori E, Assadourian B, Leidecker C (2009) Basic principles and postprocessing techniques of dual-energy CT: illustrated by selected congenital abnormalities of the thorax. J Thorac Imaging 24:152–159

    Article  PubMed  Google Scholar 

  3. Graser A, Johnson TR, Chandarana H, Macari M (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23

    Article  PubMed  Google Scholar 

  4. Hazirolan T, Akpinar B, Ünal S, Gümrük F, Haliloglu M, Alibek S (2008) Value of dual energy computed tomography for detection of myocardial iron deposition in thalassaemia patients: initial experience. Eur J Radiol 68:442–445

    Article  PubMed  Google Scholar 

  5. Uotani K, Watanabe Y, Higashi M, Nakazawa T, Kono AK, Hori Y, Fukuda T et al (2009) Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur Radiol 19:2060–2065

    Article  PubMed  Google Scholar 

  6. Chae EJ, Song JW, Seo JB et al (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  7. Yeh BM, Shepherd JA, Wang ZJ et al (2009) Dual-energy and low-kVp CT in the abdomen. AJR 193:47–54

    Article  PubMed  Google Scholar 

  8. Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TRC (2008) Dual energy CT for the assessment of lung perfusion – correlation to scintigraphy. Eur J Radiol 68:369–374

    Article  PubMed  Google Scholar 

  9. Scheffel H, Stolzmann P, Frauenfelder T et al (2007) Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 42:823–829

    Article  PubMed  Google Scholar 

  10. Choi HK, Al-Arfaj A, Eftekhari A, Munk PL, Shojania K, Reid G, Nicolaou S (2009) Dual energy computed tomography in tophaceous gout. Ann Rheum Dis 68:1609–1612

    Article  CAS  PubMed  Google Scholar 

  11. Thomas C, Patschan O, Ketelsen D, Tsiflikas I, Reimann A, Brodoefel H, Buchgeister M et al (2009) Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol Eur Radiol 19:1553–1559

    CAS  Google Scholar 

  12. Brown CL, Hartman RP, Dzyubak OP, Takahashi N, Kawashima A, McCollough CH et al (2009) Dual-energy CT iodine overlay technique for characterization of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19:1289–1295

    Article  CAS  PubMed  Google Scholar 

  13. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia - initial experience. Eur Radiol 18:2414–2424

    Article  PubMed  Google Scholar 

  14. Graser A, Johnson TR, Hecht EM, Becker CR, Leidecker C, Staehler M et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  15. Chandarana H, Godoy MC, Vlahos I, Graser A, Babb J, Leidecker C, Macari M (2008) Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms – initial observations. Radiology 249:692–700

    Article  PubMed  Google Scholar 

  16. Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M et al (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691

    Article  PubMed  Google Scholar 

  17. Ferda J, Novák M, Mírka H, Baxa J, Ferdová E, Bednárová A, Flohr T et al (2009) The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol 19:2518–2522

    Article  PubMed  Google Scholar 

  18. Graser A, Wintersperger BJ, Suess C, Reiser MF, Becker CR (2006) Dose reduction and image quality in MDCT colonography using tube current modulation. AJR 187:695–701

    Article  CAS  PubMed  Google Scholar 

  19. Heiken JP, Brink JA, McClennan BL, Sagel SS et al (1995) Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 195:353–357

    CAS  PubMed  Google Scholar 

  20. Brink JA, Heiken JP, Forman HP, Sagel SS et al (1995) Hepatic spiral CT: reduction of dose of intravenous contrast material. Radiology 197:83–88

    CAS  PubMed  Google Scholar 

  21. Menzel H, Schibilla H, Teunen D (eds) (2000) European guidelines on quality criteria for computed tomography. Publication no. EUR 16262 EN. European Commission, Luxembourg, pp 735–738

    Google Scholar 

  22. Brenner DJ, Elliston CD (2004) Estimated radiation risks potentially associated with full-body CT screening. Radiology 232:735–738

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Nicola De Cecco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cecco, C.N., Buffa, V., Fedeli, S. et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol 20, 2870–2875 (2010). https://doi.org/10.1007/s00330-010-1874-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1874-8

Keywords

Navigation