Skip to main content
Erschienen in: European Radiology 6/2016

24.09.2015 | Neuro

Topographic organization of motor fibre tracts in the human brain: findings in multiple locations using magnetic resonance diffusion tensor tractography

verfasst von: Dong-Hoon Lee, Do-Wan Lee, Bong-Soo Han

Erschienen in: European Radiology | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To identify the hand and foot fibre tracts of the corticospinal tract (CST), and to evaluate the relative locations, angles, and distances of two fibre tracts using diffusion tensor tractography (DTT).

Methods

Twelve healthy subjects were enrolled. The regions of interests (ROIs) were drawn in the functional magnetic resonance imaging (fMRI) activation areas and pons in each subject for fibre tracking. We evaluated fibre tract distributions using distances and angles between two fibre tracts starting from the location of a hand fibre tract in multiple brain regions.

Results

The measured angles and distances were 96.43–150°/2.69–9.93 mm (upper CR), 91.86–180°/1.63–7.42 mm (lower CR), 54.47–75°/0.75-4.45 mm (PLIC), and 3.65–90°/0.11–2.36 mm (pons), respectively. The distributions between CR and other sections, such as PLIC and pons, were statistically significant (p < 0.05). There were no significant differences between the upper and lower CR\ or between the PLIC and pons.

Conclusions

This study showed that the somatotopic arrangement of the hand fibre tract was located at the anterolateral portion in CR and at the anteromedial portion in PLIC and pons, based on the foot fibre. Our methods and results seem to be helpful in motor control neurological research.

Key points

We evaluated somatotopic arrangement of CST at multiple anatomical locations.
Somatotopic arrangements and fibre tract distributions were evaluated based on hand fibre location.
Relative angles, locations, and distances between two fibres vary according to their anatomical locations.
Literatur
1.
Zurück zum Zitat Han BS, Hong JH, Hong C et al (2010) Location of the corticospinal tract at the corona radiata in human brain. Brain Res 1326:75–80CrossRefPubMed Han BS, Hong JH, Hong C et al (2010) Location of the corticospinal tract at the corona radiata in human brain. Brain Res 1326:75–80CrossRefPubMed
2.
Zurück zum Zitat Jang SH (2014) The corticospinal tract from the viewpoint of brain rehabilitation. J Rehabil Med 46:193–199CrossRefPubMed Jang SH (2014) The corticospinal tract from the viewpoint of brain rehabilitation. J Rehabil Med 46:193–199CrossRefPubMed
3.
Zurück zum Zitat Keser Z, Yozbatiran N, Francisco GE, Hasan KM (2014) A note on the mapping and quantification of the human brain corticospinal tract. Eur J Radiol 83:1706–1707CrossRef Keser Z, Yozbatiran N, Francisco GE, Hasan KM (2014) A note on the mapping and quantification of the human brain corticospinal tract. Eur J Radiol 83:1706–1707CrossRef
4.
Zurück zum Zitat Lin CC, Tsai MY, Lo YC et al (2013) Reproducibility of corticospinal diffusion tensor tractography in normal subjects and hemiparetic stroke patients. Eur J Radiol 82:e610–e616CrossRefPubMed Lin CC, Tsai MY, Lo YC et al (2013) Reproducibility of corticospinal diffusion tensor tractography in normal subjects and hemiparetic stroke patients. Eur J Radiol 82:e610–e616CrossRefPubMed
5.
Zurück zum Zitat Rong D, Zhang M, Ma Q, Lu J, Li K (2014) Corticospinal tract change during motor recovery in patients with medulla infarct: a diffusion tensor imaging study. BioMed Res Int 2014:524096PubMedPubMedCentral Rong D, Zhang M, Ma Q, Lu J, Li K (2014) Corticospinal tract change during motor recovery in patients with medulla infarct: a diffusion tensor imaging study. BioMed Res Int 2014:524096PubMedPubMedCentral
6.
Zurück zum Zitat Avesani M, Formaggio E, Fuggetta G, Fiaschi A, Manganotti P (2008) Corticospinal excitability in human subjects during nonrapid eye movement sleep: single and paired-pulse transcranial magnetic stimulation study. Exp Brain Res 187:17–23CrossRefPubMed Avesani M, Formaggio E, Fuggetta G, Fiaschi A, Manganotti P (2008) Corticospinal excitability in human subjects during nonrapid eye movement sleep: single and paired-pulse transcranial magnetic stimulation study. Exp Brain Res 187:17–23CrossRefPubMed
7.
Zurück zum Zitat Bonnard M, Spieser L, Meziane HB, de Graaf JB, Pailhous J (2009) Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS-EEG. Eur J Neurosci 30:913–923CrossRefPubMed Bonnard M, Spieser L, Meziane HB, de Graaf JB, Pailhous J (2009) Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS-EEG. Eur J Neurosci 30:913–923CrossRefPubMed
9.
Zurück zum Zitat Dawnay NA, Glees P (1986) Somatotopic analysis of fibre and terminal distribution in the primate corticospinal pathway. Brain Res 391:115–123CrossRefPubMed Dawnay NA, Glees P (1986) Somatotopic analysis of fibre and terminal distribution in the primate corticospinal pathway. Brain Res 391:115–123CrossRefPubMed
10.
Zurück zum Zitat Galea MP, Darian-Smith I (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194CrossRefPubMed Galea MP, Darian-Smith I (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194CrossRefPubMed
11.
Zurück zum Zitat Jang SH, Hong JH, Ahn SH, Son SM, Cho YW (2010) Motor function reorganization in a patient with a brainstem lesion: DTT, fMRI and TMS study. NeuroRehabilitation 26:167–171PubMed Jang SH, Hong JH, Ahn SH, Son SM, Cho YW (2010) Motor function reorganization in a patient with a brainstem lesion: DTT, fMRI and TMS study. NeuroRehabilitation 26:167–171PubMed
12.
Zurück zum Zitat Keil J, Timm J, Sanmiguel I, Schulz H, Obleser J, Schonwiesner M (2014) Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials. J Neurophysiol 111:513–519CrossRefPubMed Keil J, Timm J, Sanmiguel I, Schulz H, Obleser J, Schonwiesner M (2014) Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials. J Neurophysiol 111:513–519CrossRefPubMed
13.
Zurück zum Zitat Kretschmann HJ (1998) Localisation of the corticospinal fibres in the internal capsule in man. J Anat 160:219–225 Kretschmann HJ (1998) Localisation of the corticospinal fibres in the internal capsule in man. J Anat 160:219–225
14.
Zurück zum Zitat Kwon YH, Son SM, Lee J, Bai DS, Jang SH (2011) Combined study of transcranial magnetic stimulation and diffusion tensor tractography for prediction of motor outcome in patients with corona radiata infarct. J Rehabil Med 43:430–434CrossRefPubMed Kwon YH, Son SM, Lee J, Bai DS, Jang SH (2011) Combined study of transcranial magnetic stimulation and diffusion tensor tractography for prediction of motor outcome in patients with corona radiata infarct. J Rehabil Med 43:430–434CrossRefPubMed
15.
Zurück zum Zitat Luppino G, Matelli M, Camarda R, Rizzolatti G (1994) Corticospinal projections from mesial frontal and cingulate areas in the monkey. Neuroreport 20:2545–2548CrossRef Luppino G, Matelli M, Camarda R, Rizzolatti G (1994) Corticospinal projections from mesial frontal and cingulate areas in the monkey. Neuroreport 20:2545–2548CrossRef
16.
Zurück zum Zitat Ross ED (1980) Localization of the pyramidal tract in the internal capsule by whole brain dissection. Neurology 30:59–64CrossRefPubMed Ross ED (1980) Localization of the pyramidal tract in the internal capsule by whole brain dissection. Neurology 30:59–64CrossRefPubMed
17.
Zurück zum Zitat York DH (1987) Review of descending motor pathways involved with transcranial stimulation. Neurosurgery 20:70–73CrossRefPubMed York DH (1987) Review of descending motor pathways involved with transcranial stimulation. Neurosurgery 20:70–73CrossRefPubMed
18.
Zurück zum Zitat Kwon HG, Son SM, Jang SH (2014) Development of the transcallosal motor fibre from the corticospinal tract in the human brain: diffusion tensor imaging study. Front Hum Neurosci 8:153–157PubMedPubMedCentral Kwon HG, Son SM, Jang SH (2014) Development of the transcallosal motor fibre from the corticospinal tract in the human brain: diffusion tensor imaging study. Front Hum Neurosci 8:153–157PubMedPubMedCentral
19.
Zurück zum Zitat Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMed Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMed
20.
Zurück zum Zitat Mukherjeea P, Bermana JI, Chunga SW, Hessa CP, Henrya RG (2008) Diffusion Tensor MR Imaging and Fibre Tractography: Theoretic Underpinnings. Am J Neuroradiol 29:632–641CrossRef Mukherjeea P, Bermana JI, Chunga SW, Hessa CP, Henrya RG (2008) Diffusion Tensor MR Imaging and Fibre Tractography: Theoretic Underpinnings. Am J Neuroradiol 29:632–641CrossRef
21.
Zurück zum Zitat Wakana S, Jiang H, Neage-Poetscher LM, van Zijl PC, Mori S (2004) Fibre tract-based atlas of human white matter anatomy. Radiology 230:77–87CrossRefPubMed Wakana S, Jiang H, Neage-Poetscher LM, van Zijl PC, Mori S (2004) Fibre tract-based atlas of human white matter anatomy. Radiology 230:77–87CrossRefPubMed
22.
Zurück zum Zitat Hong JH, Son SM, Jang SH (2010) Somatotopic location of corticospinal tract at pons in human brain: A diffusion tensor tractography. Neuroimage 51:952–955CrossRefPubMed Hong JH, Son SM, Jang SH (2010) Somatotopic location of corticospinal tract at pons in human brain: A diffusion tensor tractography. Neuroimage 51:952–955CrossRefPubMed
23.
Zurück zum Zitat Ino T, Nakai R, Azuma T et al (2007) Somatotopy of corticospinal tract in the internal capsule shown by functional MRI and diffusion tensor images. Neuroreport 18:665–668CrossRefPubMed Ino T, Nakai R, Azuma T et al (2007) Somatotopy of corticospinal tract in the internal capsule shown by functional MRI and diffusion tensor images. Neuroreport 18:665–668CrossRefPubMed
24.
Zurück zum Zitat Jang SH, Kwon HK (2014) Change of anterior corticospinal tract on the normal side of the brain in chronic stroke patients: Diffusion tensor imaging study. Somatosens Mot Res 1–6 Jang SH, Kwon HK (2014) Change of anterior corticospinal tract on the normal side of the brain in chronic stroke patients: Diffusion tensor imaging study. Somatosens Mot Res 1–6
25.
Zurück zum Zitat Pan C, Peck KK, Young RJ, Holodny AI (2012) Somatotopic organization of motor pathways in the internal capsule: a probabilistic diffusion tractography study. Am J Neuroradiol 33:1274–1280CrossRefPubMed Pan C, Peck KK, Young RJ, Holodny AI (2012) Somatotopic organization of motor pathways in the internal capsule: a probabilistic diffusion tractography study. Am J Neuroradiol 33:1274–1280CrossRefPubMed
26.
Zurück zum Zitat Yoo JS, Choi BY, Chang CH, Jung YJ, Kim SH, Jang SH (2014) Characteristics of injury of the corticospinal tract and corticoreticular pathway in hemiparetic patients with putaminal hemorrhage. BMC Neurol 14:121CrossRefPubMedPubMedCentral Yoo JS, Choi BY, Chang CH, Jung YJ, Kim SH, Jang SH (2014) Characteristics of injury of the corticospinal tract and corticoreticular pathway in hemiparetic patients with putaminal hemorrhage. BMC Neurol 14:121CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Yoshiura T, Kumazawa S, Noguchi T et al (2008) MR tractography based on directional diffusion function validation in somatotopic organization of the pyramidal tract. Acad Radiol 15:186–192CrossRefPubMed Yoshiura T, Kumazawa S, Noguchi T et al (2008) MR tractography based on directional diffusion function validation in somatotopic organization of the pyramidal tract. Acad Radiol 15:186–192CrossRefPubMed
28.
Zurück zum Zitat Holodny AI, Gor DM, Watts R, Gutin PH, Ulug AM (2005) Diffusion-tensor MR tractography of somamtotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology 234:649–653CrossRefPubMed Holodny AI, Gor DM, Watts R, Gutin PH, Ulug AM (2005) Diffusion-tensor MR tractography of somamtotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology 234:649–653CrossRefPubMed
29.
Zurück zum Zitat Kim JS, Pope A (2005) Somatotopically located motor fibres in the corona radiate: Evidence from subcortical small infacts. Neurology 64:1438–1440CrossRefPubMed Kim JS, Pope A (2005) Somatotopically located motor fibres in the corona radiate: Evidence from subcortical small infacts. Neurology 64:1438–1440CrossRefPubMed
30.
Zurück zum Zitat Lee DH, Kwon YH, Hwang YT, Kim JH, Park JW (2012) Somatotopic location of corticospinal tracts in the internal capsule with MR tractography. Eur Neurol 67:69–73CrossRefPubMed Lee DH, Kwon YH, Hwang YT, Kim JH, Park JW (2012) Somatotopic location of corticospinal tracts in the internal capsule with MR tractography. Eur Neurol 67:69–73CrossRefPubMed
31.
Zurück zum Zitat Lee DH, Hong CP, Han BS (2014) Diffusion-tensor magnetic resonance imaging for hand and foot fibres location at the corona radiata: comparison with two lesion studies. Front Hum Neurosci 8:752–756PubMedPubMedCentral Lee DH, Hong CP, Han BS (2014) Diffusion-tensor magnetic resonance imaging for hand and foot fibres location at the corona radiata: comparison with two lesion studies. Front Hum Neurosci 8:752–756PubMedPubMedCentral
32.
Zurück zum Zitat Park JK, Kim BS, Choi G, Kim SH, Choi JC, Khang H (2008) Evaluation of the somatotopic organization of corticospinal tracts in the internal capsule and cerebral peducle: results of diffusion-tensor MR tractography. Korean J Radiol 9:191–195CrossRefPubMedPubMedCentral Park JK, Kim BS, Choi G, Kim SH, Choi JC, Khang H (2008) Evaluation of the somatotopic organization of corticospinal tracts in the internal capsule and cerebral peducle: results of diffusion-tensor MR tractography. Korean J Radiol 9:191–195CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Song YM (2007) Somatotopic organization of motor fibres in the corona radiate in monoparetic patients with small subcortical infarcts. Stroke 38:2353–2355CrossRefPubMed Song YM (2007) Somatotopic organization of motor fibres in the corona radiate in monoparetic patients with small subcortical infarcts. Stroke 38:2353–2355CrossRefPubMed
34.
Zurück zum Zitat Tohgi H, Takahashi S, Takahashi H, Tamura K, Yonezawa H (1996) The side and somototopical location of single small infarcts in the corona radiata and pontine base in relation to contralateral limb paresis and dysarthria. Eur Neurol 36:338–342CrossRefPubMed Tohgi H, Takahashi S, Takahashi H, Tamura K, Yonezawa H (1996) The side and somototopical location of single small infarcts in the corona radiata and pontine base in relation to contralateral limb paresis and dysarthria. Eur Neurol 36:338–342CrossRefPubMed
35.
Zurück zum Zitat Ciccarelli O, Behrens TE, Altmann DR et al (2006) Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain 129:1859–1871CrossRefPubMed Ciccarelli O, Behrens TE, Altmann DR et al (2006) Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain 129:1859–1871CrossRefPubMed
36.
Zurück zum Zitat Sach M, Winkler G, Glauche V et al (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350CrossRefPubMed Sach M, Winkler G, Glauche V et al (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350CrossRefPubMed
37.
Zurück zum Zitat Dumas EM, van den Bogaard SJ, Ruber ME et al (2012) Early changes in whitematter pathways of the sensorimotor cortex in premanifest Huntington's disease. Hum Brain Mapp 33:203–212CrossRefPubMed Dumas EM, van den Bogaard SJ, Ruber ME et al (2012) Early changes in whitematter pathways of the sensorimotor cortex in premanifest Huntington's disease. Hum Brain Mapp 33:203–212CrossRefPubMed
38.
Zurück zum Zitat Verstynen T, Jarbo K, Pathak S, Schneider W (2011) In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol 105:336–346CrossRefPubMed Verstynen T, Jarbo K, Pathak S, Schneider W (2011) In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol 105:336–346CrossRefPubMed
39.
Zurück zum Zitat Abhinav K, Yeh FC, Pathak S et al (2014) Advanced diffusion MRI fibre tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: A review. Biochim Biophys Acta 1842:2286–2297CrossRefPubMed Abhinav K, Yeh FC, Pathak S et al (2014) Advanced diffusion MRI fibre tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: A review. Biochim Biophys Acta 1842:2286–2297CrossRefPubMed
40.
41.
Zurück zum Zitat Koch G, Bozzali M, Bonní S et al (2012) fMRI resting slow fluctuations correlate with the activity of fast corticocortical physiological connections. PLoS One 7, e52660CrossRefPubMedPubMedCentral Koch G, Bozzali M, Bonní S et al (2012) fMRI resting slow fluctuations correlate with the activity of fast corticocortical physiological connections. PLoS One 7, e52660CrossRefPubMedPubMedCentral
42.
43.
Zurück zum Zitat Frinston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD (2006) Statistical Parametric Mapping: The analysis of functional brain images, 1st edn. Academic Press, London Frinston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD (2006) Statistical Parametric Mapping: The analysis of functional brain images, 1st edn. Academic Press, London
44.
Zurück zum Zitat Jang SH, Seo JP (2015) Aging of corticospinal tract fibres according to the cerebral origin in the human brain: A diffusion tensor imaging study. Neurosci Lett 12:77–81CrossRef Jang SH, Seo JP (2015) Aging of corticospinal tract fibres according to the cerebral origin in the human brain: A diffusion tensor imaging study. Neurosci Lett 12:77–81CrossRef
45.
Zurück zum Zitat Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 41:1149–1160CrossRefPubMed Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 41:1149–1160CrossRefPubMed
46.
Zurück zum Zitat Bassetti C, Bogousslavsky J, Barth A, Regli F (1996) Isolated infarcts of the pons. Neurology 46:167–175CrossRef Bassetti C, Bogousslavsky J, Barth A, Regli F (1996) Isolated infarcts of the pons. Neurology 46:167–175CrossRef
47.
Zurück zum Zitat Schmahmann JD, Ko R, MacMore J (2004) The human basis pontis: motor syndromes and topographic organization. Brain 127:1269–1291CrossRefPubMed Schmahmann JD, Ko R, MacMore J (2004) The human basis pontis: motor syndromes and topographic organization. Brain 127:1269–1291CrossRefPubMed
48.
Zurück zum Zitat Schneider R, Gautier JC (1994) Leg weakness due to stroke. Site of lesions, weakness patterns and causes. Brain 117:347–354CrossRefPubMed Schneider R, Gautier JC (1994) Leg weakness due to stroke. Site of lesions, weakness patterns and causes. Brain 117:347–354CrossRefPubMed
49.
Zurück zum Zitat Hardy TL, Bertrand G, Thompson CJ (1979) The position and organization of motor fibres in the internal capsule found during stereotactic surgery. Appl Neurophysiol 42:160–170PubMed Hardy TL, Bertrand G, Thompson CJ (1979) The position and organization of motor fibres in the internal capsule found during stereotactic surgery. Appl Neurophysiol 42:160–170PubMed
50.
Zurück zum Zitat Marx JJ, Iannetti GD, Thömke F et al (2005) Somatotopic organization of the corticospinal tract in the human brainstem: a MRI-based mapping analysis. Ann Neurol 57:824–831CrossRefPubMed Marx JJ, Iannetti GD, Thömke F et al (2005) Somatotopic organization of the corticospinal tract in the human brainstem: a MRI-based mapping analysis. Ann Neurol 57:824–831CrossRefPubMed
51.
Zurück zum Zitat Kleiser R, Staempfli P, Valavanis A, Boesiger P, Kollias S (2010) Impact of fMRI-guided advanced DTI fibre tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 52:37–46CrossRefPubMed Kleiser R, Staempfli P, Valavanis A, Boesiger P, Kollias S (2010) Impact of fMRI-guided advanced DTI fibre tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 52:37–46CrossRefPubMed
52.
Zurück zum Zitat Li J, Luo C, Peng Y et al (2014) Probabilistic diffusion tractography reveals improvement of structural network in musicians. PLoS One 9(e105508):2014 Li J, Luo C, Peng Y et al (2014) Probabilistic diffusion tractography reveals improvement of structural network in musicians. PLoS One 9(e105508):2014
53.
Zurück zum Zitat Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:1100–1111CrossRefPubMed Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:1100–1111CrossRefPubMed
54.
Zurück zum Zitat Staempfli P, Reischauer C, Jaermann T et al (2008) Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fibre tracking and for verifying DTI-based fibre tractography results. Neuroimage 39:119–126CrossRefPubMed Staempfli P, Reischauer C, Jaermann T et al (2008) Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fibre tracking and for verifying DTI-based fibre tractography results. Neuroimage 39:119–126CrossRefPubMed
Metadaten
Titel
Topographic organization of motor fibre tracts in the human brain: findings in multiple locations using magnetic resonance diffusion tensor tractography
verfasst von
Dong-Hoon Lee
Do-Wan Lee
Bong-Soo Han
Publikationsdatum
24.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 6/2016
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3989-4

Weitere Artikel der Ausgabe 6/2016

European Radiology 6/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.