Skip to main content
Erschienen in: European Radiology 8/2016

15.12.2015 | Physics

The role of Size-Specific Dose Estimate (SSDE) in patient-specific organ dose and cancer risk estimation in paediatric chest and abdominopelvic CT examinations

verfasst von: Caro Franck, Charlot Vandevoorde, Ingeborg Goethals, Peter Smeets, Eric Achten, Koenraad Verstraete, Hubert Thierens, Klaus Bacher

Erschienen in: European Radiology | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop a clinically applicable method to estimate patient-specific organ and blood doses and lifetime attributable risks (LAR) from paediatric torso CT examinations.

Methods

Individualized voxel models were created from full-body CT data of 10 paediatric patients (2–18 years). Patient-specific dose distributions of chest and abdominopelvic CT scans were simulated using Monte Carlo methods. Blood dose was calculated as a weighted sum of simulated organ doses. LAR of cancer incidence and mortality were estimated, according to BEIR-VII. A second simulation and blood dose calculation was performed using only the thoracic and abdominopelvic region of the original voxel models. For each simulation, the size-specific dose estimate (SSDE) was calculated.

Results

SSDE showed a significant strong linear correlation with organ dose (r > 0.8) and blood dose (r > 0.9) and LAR (r > 0.9). No significant differences were found between blood dose calculations with the full-body voxel models and the thoracic or abdominopelvic models.

Conclusion

Even though clinical CT images mostly do not cover the whole body of the patient, they can be used as a voxel model for blood dose calculation. In addition, SSDE can estimate patient-specific organ and blood doses and LAR in paediatric torso CT examinations.

Key Points

Blood dose can be simulated using the patient’s clinical CT images.
SSDE estimates patient-specific organ/blood dose and LAR in paediatric CAP CT-examinations.
SSDE makes on-the-spot dose and LAR estimations possible in routine clinical practice.
Literatur
1.
Zurück zum Zitat UNSCEAR (2008) Sources and effects of ionizing radiation. Report to the General Assembly of the United Nations. United Nations, New York UNSCEAR (2008) Sources and effects of ionizing radiation. Report to the General Assembly of the United Nations. United Nations, New York
2.
Zurück zum Zitat NCRP (2009) Ionizing radiation exposure of the population of the United States. NCRP Report 160, Bethesda MD NCRP (2009) Ionizing radiation exposure of the population of the United States. NCRP Report 160, Bethesda MD
3.
Zurück zum Zitat HSE (2009) Population dose from CT scanning, Ireland HSE (2009) Population dose from CT scanning, Ireland
4.
Zurück zum Zitat PHE (2010) Frequency and collective dose for medical and dental x-ray examinations in the UK (HPA-CRCE-012), United Kingdom PHE (2010) Frequency and collective dose for medical and dental x-ray examinations in the UK (HPA-CRCE-012), United Kingdom
5.
Zurück zum Zitat Brenner D, Hall E (2007) Current concepts - computed tomography - an increasing source of radiation exposure. N Engl J Med 357:2277–2284CrossRefPubMed Brenner D, Hall E (2007) Current concepts - computed tomography - an increasing source of radiation exposure. N Engl J Med 357:2277–2284CrossRefPubMed
6.
Zurück zum Zitat UNSCEAR (2013) Sources and effects of ionizing radiation. Report to the General Assembly of the United Nations. United Nations, New York UNSCEAR (2013) Sources and effects of ionizing radiation. Report to the General Assembly of the United Nations. United Nations, New York
7.
Zurück zum Zitat AAPM (2011) Size-Specific Dose Estimates (SSDE) in pediatric and adult body ct examinations (Task Group 204). American Association of Physicists in Medicine, College Park AAPM (2011) Size-Specific Dose Estimates (SSDE) in pediatric and adult body ct examinations (Task Group 204). American Association of Physicists in Medicine, College Park
8.
Zurück zum Zitat AAPM (2014) Use of water equivalent diameter for calculating patient size and Size-Specific Dose Estimate (SSDE) in CT (Task Group 220). American Association of Physicists in Medicine, College Park AAPM (2014) Use of water equivalent diameter for calculating patient size and Size-Specific Dose Estimate (SSDE) in CT (Task Group 220). American Association of Physicists in Medicine, College Park
9.
Zurück zum Zitat Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part II. Application to patients. Med Phys 38:408–419CrossRefPubMed Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part II. Application to patients. Med Phys 38:408–419CrossRefPubMed
10.
Zurück zum Zitat Petoussi-Henss N, Zankl M, Fill U, Regulla D (2002) The GSF family of voxel phantoms. Phys Med Biol 47:89–106CrossRefPubMed Petoussi-Henss N, Zankl M, Fill U, Regulla D (2002) The GSF family of voxel phantoms. Phys Med Biol 47:89–106CrossRefPubMed
11.
Zurück zum Zitat Brady Z, Cain TM, Johnston PN (2012) Comparison of organ dosimetry methods and effective dose calculation methods for paediatric CT. Australas Phys Eng Sci Med 35:117–134CrossRefPubMed Brady Z, Cain TM, Johnston PN (2012) Comparison of organ dosimetry methods and effective dose calculation methods for paediatric CT. Australas Phys Eng Sci Med 35:117–134CrossRefPubMed
12.
Zurück zum Zitat Thierry-Chef I, Dabin J, Friberg EG et al (2013) Assessing organ doses from paediatric CT scans-a novel approach for an epidemiology study (the EPI-CT study). Int J Environ Res Public Health 10:717–728CrossRefPubMedPubMedCentral Thierry-Chef I, Dabin J, Friberg EG et al (2013) Assessing organ doses from paediatric CT scans-a novel approach for an epidemiology study (the EPI-CT study). Int J Environ Res Public Health 10:717–728CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I. Development and validation of a Monte Carlo program. Med Phys 38:397–407CrossRefPubMed Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I. Development and validation of a Monte Carlo program. Med Phys 38:397–407CrossRefPubMed
14.
Zurück zum Zitat Lobrich M, Rief N, Kuhne M et al (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci U S A 102:8984–8989CrossRefPubMedPubMedCentral Lobrich M, Rief N, Kuhne M et al (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci U S A 102:8984–8989CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Beels L, Bacher K, Smeets P, Verstraete K, Vral A, Thierens H (2012) Dose-length product of scanners correlates with DNA damage in patients undergoing contrast CT. Eur J Radiol 81:1495–1499CrossRefPubMed Beels L, Bacher K, Smeets P, Verstraete K, Vral A, Thierens H (2012) Dose-length product of scanners correlates with DNA damage in patients undergoing contrast CT. Eur J Radiol 81:1495–1499CrossRefPubMed
16.
Zurück zum Zitat Halm BM, Franke AA, Lai JF et al (2014) γ-H2AX foci are increased in lymphocytes in vivo in young children 1 h after very low-dose X-irradiation: a pilot study. Pediatr Radiol 44:1310–1317CrossRefPubMedPubMedCentral Halm BM, Franke AA, Lai JF et al (2014) γ-H2AX foci are increased in lymphocytes in vivo in young children 1 h after very low-dose X-irradiation: a pilot study. Pediatr Radiol 44:1310–1317CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V (2007) Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 242:244–251CrossRefPubMed Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V (2007) Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 242:244–251CrossRefPubMed
19.
Zurück zum Zitat ICRP (2002) Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP publication 89. Ann ICRP 32:5–265CrossRef ICRP (2002) Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP publication 89. Ann ICRP 32:5–265CrossRef
20.
Zurück zum Zitat Chen W, Kolditz D, Beister M, Bohle R, Kalender WA (2012) Fast on-site Monte Carlo tool for dose calculations in CT applications. Med Phys 39:2985–2996CrossRefPubMed Chen W, Kolditz D, Beister M, Bohle R, Kalender WA (2012) Fast on-site Monte Carlo tool for dose calculations in CT applications. Med Phys 39:2985–2996CrossRefPubMed
21.
Zurück zum Zitat Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18:759–772CrossRefPubMed Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18:759–772CrossRefPubMed
22.
Zurück zum Zitat Schmidt B, Kalender WA (2002) A fast voxel-based Monte Carlo method for scanner- and patient-specific dose calculations in computed tomography. Phys Med 18:43–53 Schmidt B, Kalender WA (2002) A fast voxel-based Monte Carlo method for scanner- and patient-specific dose calculations in computed tomography. Phys Med 18:43–53
23.
Zurück zum Zitat Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Biol 26:389–400CrossRefPubMed Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Biol 26:389–400CrossRefPubMed
24.
Zurück zum Zitat Seuntjens J, Thierens H, Van der Plaetsen A, Segaert O (1987) Conversion factor f for X-ray beam qualities, specified by peak tube potential and HVL value. Phys Med Biol 32:595–603CrossRefPubMed Seuntjens J, Thierens H, Van der Plaetsen A, Segaert O (1987) Conversion factor f for X-ray beam qualities, specified by peak tube potential and HVL value. Phys Med Biol 32:595–603CrossRefPubMed
25.
Zurück zum Zitat Council N (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. The National Academies Press Council N (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. The National Academies Press
26.
Zurück zum Zitat Brenner DJ (2010) Slowing the increase in the population dose resulting from CT scans. Radiat Res 174:809–815CrossRefPubMed Brenner DJ (2010) Slowing the increase in the population dose resulting from CT scans. Radiat Res 174:809–815CrossRefPubMed
27.
Zurück zum Zitat Krille L, Zeeb H, Jahnen A et al (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51:103–111CrossRefPubMed Krille L, Zeeb H, Jahnen A et al (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51:103–111CrossRefPubMed
28.
Zurück zum Zitat EPA (2011) EPA radiogenic cancer risk models and projections for the U.S. population. U.S. Environmental Protection Agency, Washington DC EPA (2011) EPA radiogenic cancer risk models and projections for the U.S. population. U.S. Environmental Protection Agency, Washington DC
29.
Zurück zum Zitat ICRP (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37:1–332CrossRef ICRP (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37:1–332CrossRef
30.
Zurück zum Zitat Tian X, Li X, Segars W, Paulson E, Frush D, Samei E (2014) Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models. Radiology 270:535–547CrossRefPubMedPubMedCentral Tian X, Li X, Segars W, Paulson E, Frush D, Samei E (2014) Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models. Radiology 270:535–547CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP (2011) Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology 259:862–874CrossRefPubMedPubMedCentral Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP (2011) Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology 259:862–874CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat ICRP (2009) Adult reference computational phantoms. ICRP publication 110. Ann ICRP 39:1–166CrossRef ICRP (2009) Adult reference computational phantoms. ICRP publication 110. Ann ICRP 39:1–166CrossRef
33.
Zurück zum Zitat (2012) IEC 60601-2-44-am1 ed3.0 Medical electrical equipment - part2-44: particular requirements for the basic safety and essential performance of X-ray equipment for computed tomography (2012) IEC 60601-2-44-am1 ed3.0 Medical electrical equipment - part2-44: particular requirements for the basic safety and essential performance of X-ray equipment for computed tomography
34.
Zurück zum Zitat Khatonabadi M, Kim HJ, Lu P et al (2013) The feasibility of a regional CTDIvol to estimate organ dose from tube current modulated CT exams. Med Phys 40:051903CrossRefPubMedPubMedCentral Khatonabadi M, Kim HJ, Lu P et al (2013) The feasibility of a regional CTDIvol to estimate organ dose from tube current modulated CT exams. Med Phys 40:051903CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Turner AC, Zhang D, Khatonabadi M et al (2011) The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys 38:820–829CrossRefPubMedPubMedCentral Turner AC, Zhang D, Khatonabadi M et al (2011) The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys 38:820–829CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Moore BM, Brady SL, Mirro AE, Kaufman RA (2014) Size-Specific Dose Estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations. Med Phys 41 Moore BM, Brady SL, Mirro AE, Kaufman RA (2014) Size-Specific Dose Estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations. Med Phys 41
37.
Zurück zum Zitat (2002) Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP 32:5–265 (2002) Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP 32:5–265
Metadaten
Titel
The role of Size-Specific Dose Estimate (SSDE) in patient-specific organ dose and cancer risk estimation in paediatric chest and abdominopelvic CT examinations
verfasst von
Caro Franck
Charlot Vandevoorde
Ingeborg Goethals
Peter Smeets
Eric Achten
Koenraad Verstraete
Hubert Thierens
Klaus Bacher
Publikationsdatum
15.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2016
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4091-7

Weitere Artikel der Ausgabe 8/2016

European Radiology 8/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.