Skip to main content
Erschienen in: European Radiology 4/2017

19.07.2016 | Neuro

Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient

verfasst von: Yoon Seong Choi, Ho-Joon Lee, Sung Soo Ahn, Jong Hee Chang, Seok-Gu Kang, Eui Hyun Kim, Se Hoon Kim, Seung-Koo Lee

Erschienen in: European Radiology | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate the ability of the initial area under the curve (IAUC) derived from dynamic contrast-enhanced MR imaging (DCE-MRI) and apparent diffusion coefficient (ADC) in differentiating between primary central nervous system lymphoma (PCNSL) and atypical glioblastoma (GBM).

Methods

We retrospectively identified 19 patients with atypical GBM (less than 13 % necrosis of the enhancing tumour), and 23 patients with PCNSL. The histogram parameters of IAUC at 30, 60, 90 s (IAUC30, IAUC60, and IAUC90), and ADC were compared between PCNSL and GBM. The diagnostic performances and added values of the IAUC and ADC for differentiating between PCNSL and GBM were evaluated. Interobserver agreement was assessed via intraclass correlation coefficient (ICC).

Results

The IAUC and ADC parameters were higher in GBM than in PCNSL. The 90th percentile (p90) of IAUC30 and 10th percentile (p10) of ADC showed the best diagnostic performance. Adding p90 of IAUC30 to p10 of ADC improved the differentiation between PCNSL and GBM (area under the ROC curve [AUC] = 0.886), compared to IAUC30 or ADC alone (AUC = 0.789 and 0.744; P < 0.05 for all). The ICC was 0.96 for p90 of IAUC30.

Conclusions

The IAUC may be a useful parameter together with ADC for differentiating between PCNSL and atypical GBM.

Key Points

High reproducibility is essential for practical implementation of advanced MRI parameters.
IAUC and ADC are highly reproducible parameters.
IAUC values were higher in atypical GBM than in PCNSL.
Adding IAUC to ADC improved the differentiation between PCNSL and GBM.
IAUC with ADC are useful for differentiating PCNSL from GBM.
Literatur
2.
Zurück zum Zitat Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
3.
Zurück zum Zitat Haldorsen IS, Espeland A, Larsson E-M (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol 32:984–992CrossRefPubMed Haldorsen IS, Espeland A, Larsson E-M (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol 32:984–992CrossRefPubMed
4.
Zurück zum Zitat Al-Okaili RN, Krejza J, Woo JH et al (2007) Intraaxial Brain Masses: MR Imaging–based Diagnostic Strategy—Initial Experience. Radiology 243:539–550CrossRefPubMed Al-Okaili RN, Krejza J, Woo JH et al (2007) Intraaxial Brain Masses: MR Imaging–based Diagnostic Strategy—Initial Experience. Radiology 243:539–550CrossRefPubMed
5.
Zurück zum Zitat Kickingereder P, Wiestler B, Sahm F et al (2014) Primary Central Nervous System Lymphoma and Atypical Glioblastoma: Multiparametric Differentiation by Using Diffusion-, Perfusion-, and Susceptibility-weighted MR Imaging. Radiology 272:843–850CrossRefPubMed Kickingereder P, Wiestler B, Sahm F et al (2014) Primary Central Nervous System Lymphoma and Atypical Glioblastoma: Multiparametric Differentiation by Using Diffusion-, Perfusion-, and Susceptibility-weighted MR Imaging. Radiology 272:843–850CrossRefPubMed
6.
Zurück zum Zitat Kickingereder P, Sahm F, Wiestler B et al (2014) Evaluation of Microvascular Permeability with Dynamic Contrast-Enhanced MRI for the Differentiation of Primary CNS Lymphoma and Glioblastoma: Radiologic-Pathologic Correlation. Am J Neuroradiol 35:1503–1508CrossRefPubMed Kickingereder P, Sahm F, Wiestler B et al (2014) Evaluation of Microvascular Permeability with Dynamic Contrast-Enhanced MRI for the Differentiation of Primary CNS Lymphoma and Glioblastoma: Radiologic-Pathologic Correlation. Am J Neuroradiol 35:1503–1508CrossRefPubMed
7.
Zurück zum Zitat Toh C-H, Castillo M, Wong A-C et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. Am J Neuroradiol 29:471–475CrossRefPubMed Toh C-H, Castillo M, Wong A-C et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. Am J Neuroradiol 29:471–475CrossRefPubMed
8.
Zurück zum Zitat Toh CH, Wei K-C, Chang C-N et al (2013) Differentiation of Primary Central Nervous System Lymphomas and Glioblastomas: Comparisons of Diagnostic Performance of Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging without and with Contrast-Leakage Correction. Am J Neuroradiol 34:1145–1149CrossRefPubMed Toh CH, Wei K-C, Chang C-N et al (2013) Differentiation of Primary Central Nervous System Lymphomas and Glioblastomas: Comparisons of Diagnostic Performance of Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging without and with Contrast-Leakage Correction. Am J Neuroradiol 34:1145–1149CrossRefPubMed
9.
Zurück zum Zitat Paulson ES, Schmainda KM (2008) Comparison of Dynamic Susceptibility-weighted Contrast-enhanced MR Methods: Recommendations for Measuring Relative Cerebral Blood Volume in Brain Tumors. Radiology 249:601–613CrossRefPubMedPubMedCentral Paulson ES, Schmainda KM (2008) Comparison of Dynamic Susceptibility-weighted Contrast-enhanced MR Methods: Recommendations for Measuring Relative Cerebral Blood Volume in Brain Tumors. Radiology 249:601–613CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Prah MA, Stufflebeam SM, Paulson ES et al (2015) Repeatability of Standardized and Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma. Am J Neuroradiol 36:1654–1661CrossRefPubMedPubMedCentral Prah MA, Stufflebeam SM, Paulson ES et al (2015) Repeatability of Standardized and Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma. Am J Neuroradiol 36:1654–1661CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Essock-Burns E, Phillips JJ, Molinaro AM et al (2013) Comparison of DSC-MRI post-processing techniques in predicting microvascular histopathology in patients newly diagnosed with GBM. J Magn Reson Imaging 38:388–400CrossRefPubMed Essock-Burns E, Phillips JJ, Molinaro AM et al (2013) Comparison of DSC-MRI post-processing techniques in predicting microvascular histopathology in patients newly diagnosed with GBM. J Magn Reson Imaging 38:388–400CrossRefPubMed
12.
Zurück zum Zitat Kudo K, Christensen S, Sasaki M et al (2013) Accuracy and Reliability Assessment of CT and MR Perfusion Analysis Software Using a Digital Phantom. Radiology 267:201–211CrossRefPubMedPubMedCentral Kudo K, Christensen S, Sasaki M et al (2013) Accuracy and Reliability Assessment of CT and MR Perfusion Analysis Software Using a Digital Phantom. Radiology 267:201–211CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Chung WJ, Kim HS, Kim N et al (2013) Recurrent Glioblastoma: Optimum Area under the Curve Method Derived from Dynamic Contrast-enhanced T1-weighted Perfusion MR Imaging. Radiology 269:561–568CrossRefPubMed Chung WJ, Kim HS, Kim N et al (2013) Recurrent Glioblastoma: Optimum Area under the Curve Method Derived from Dynamic Contrast-enhanced T1-weighted Perfusion MR Imaging. Radiology 269:561–568CrossRefPubMed
14.
Zurück zum Zitat Cheng H-LM (2009) Improved correlation to quantitative DCE-MRI pharmacokinetic parameters using a modified initial area under the uptake curve (mIAUC) approach. J Magn Reson Imaging 30:864–872CrossRefPubMed Cheng H-LM (2009) Improved correlation to quantitative DCE-MRI pharmacokinetic parameters using a modified initial area under the uptake curve (mIAUC) approach. J Magn Reson Imaging 30:864–872CrossRefPubMed
15.
Zurück zum Zitat Beuzit L, Eliat P-A, Brun V et al (2015) Dynamic contrast-enhanced MRI: Study of inter-software accuracy and reproducibility using simulated and clinical data. J Magn Reson Imaging. doi:10.1002/jmri.25101 PubMed Beuzit L, Eliat P-A, Brun V et al (2015) Dynamic contrast-enhanced MRI: Study of inter-software accuracy and reproducibility using simulated and clinical data. J Magn Reson Imaging. doi:10.​1002/​jmri.​25101 PubMed
16.
Zurück zum Zitat Tietze A, Mouridsen K, Mikkelsen IK (2015) The impact of reliable prebolus T 1 measurements or a fixed T 1 value in the assessment of glioma patients with dynamic contrast enhancing MRI. Neuroradiology 57:561–572CrossRefPubMed Tietze A, Mouridsen K, Mikkelsen IK (2015) The impact of reliable prebolus T 1 measurements or a fixed T 1 value in the assessment of glioma patients with dynamic contrast enhancing MRI. Neuroradiology 57:561–572CrossRefPubMed
17.
Zurück zum Zitat Fedorov A, Fluckiger J, Ayers GD et al (2014) A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: A step towards practical implementation. Magn Reson Imaging 32:321–329CrossRefPubMedPubMedCentral Fedorov A, Fluckiger J, Ayers GD et al (2014) A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: A step towards practical implementation. Magn Reson Imaging 32:321–329CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Hamilton JD, Lin J, Ison C et al (2015) Dynamic Contrast-Enhanced Perfusion Processing for Neuroradiologists: Model-Dependent Analysis May Not Be Necessary for Determining Recurrent High-Grade Glioma versus Treatment Effect. Am J Neuroradiol 36:686–693CrossRefPubMed Hamilton JD, Lin J, Ison C et al (2015) Dynamic Contrast-Enhanced Perfusion Processing for Neuroradiologists: Model-Dependent Analysis May Not Be Necessary for Determining Recurrent High-Grade Glioma versus Treatment Effect. Am J Neuroradiol 36:686–693CrossRefPubMed
19.
Zurück zum Zitat Narang J, Jain R, Arbab AS et al (2011) Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro-Oncol 13:1037–1046CrossRefPubMedPubMedCentral Narang J, Jain R, Arbab AS et al (2011) Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro-Oncol 13:1037–1046CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Akisik MF, Sandrasegaran K, Bu G et al (2010) Pancreatic Cancer: Utility of Dynamic Contrast-enhanced MR Imaging in Assessment of Antiangiogenic Therapy. Radiology 256:441–449CrossRefPubMed Akisik MF, Sandrasegaran K, Bu G et al (2010) Pancreatic Cancer: Utility of Dynamic Contrast-enhanced MR Imaging in Assessment of Antiangiogenic Therapy. Radiology 256:441–449CrossRefPubMed
21.
Zurück zum Zitat Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging Measurements Predict Radiation Response in Cervix Cancer. Int J Radiat Oncol 74:766–773CrossRef Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging Measurements Predict Radiation Response in Cervix Cancer. Int J Radiat Oncol 74:766–773CrossRef
22.
Zurück zum Zitat Rieber A, Brambs H-J, Gabelmann A et al (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 12:1711–1719CrossRefPubMed Rieber A, Brambs H-J, Gabelmann A et al (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 12:1711–1719CrossRefPubMed
23.
Zurück zum Zitat Park JE, Kim HS, Goh MJ et al (2015) Pseudoprogression in Patients with Glioblastoma: Assessment by Using Volume-weighted Voxel-based Multiparametric Clustering of MR Imaging Data in an Independent Test Set. Radiology 275:792–802CrossRefPubMed Park JE, Kim HS, Goh MJ et al (2015) Pseudoprogression in Patients with Glioblastoma: Assessment by Using Volume-weighted Voxel-based Multiparametric Clustering of MR Imaging Data in an Independent Test Set. Radiology 275:792–802CrossRefPubMed
24.
Zurück zum Zitat Bisdas S, Naegele T, Ritz R et al (2011) Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol 18:575–583CrossRefPubMed Bisdas S, Naegele T, Ritz R et al (2011) Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol 18:575–583CrossRefPubMed
25.
Zurück zum Zitat Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro-Oncol 17:iv1–iv62CrossRefPubMedPubMedCentral Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro-Oncol 17:iv1–iv62CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Lee HY, Kim HS, Park JW et al (2013) Atypical Imaging Features of Epstein-Barr Virus–Positive Primary Central Nervous System Lymphomas in Patients without AIDS. Am J Neuroradiol 34:1562–1567CrossRefPubMed Lee HY, Kim HS, Park JW et al (2013) Atypical Imaging Features of Epstein-Barr Virus–Positive Primary Central Nervous System Lymphomas in Patients without AIDS. Am J Neuroradiol 34:1562–1567CrossRefPubMed
27.
Zurück zum Zitat Kitai R, Matsuda K, Adachi E et al (2010) Epstein-Barr Virus-Associated Primary Central Nervous System Lymphoma in the Japanese Population. Neurol Med Chir (Tokyo) 50:114–118CrossRef Kitai R, Matsuda K, Adachi E et al (2010) Epstein-Barr Virus-Associated Primary Central Nervous System Lymphoma in the Japanese Population. Neurol Med Chir (Tokyo) 50:114–118CrossRef
28.
Zurück zum Zitat Geddes JF, Bhattacharjee MB, Savage K et al (1992) Primary cerebral lymphoma: a study of 47 cases probed for Epstein-Barr virus genome. J Clin Pathol 45:587–590CrossRefPubMedPubMedCentral Geddes JF, Bhattacharjee MB, Savage K et al (1992) Primary cerebral lymphoma: a study of 47 cases probed for Epstein-Barr virus genome. J Clin Pathol 45:587–590CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Krogh-Jensen M, Johansen P, D’amore F (1998) Primary Central Nervous System Lymphomas in Immunocompetent Individuals: Histology, Epstein-Barr Virus Genome, Ki-67 Proliferation Index, p53 and bcl-2 Gene Expression. Leuk Lymphoma 30:131–142CrossRefPubMed Krogh-Jensen M, Johansen P, D’amore F (1998) Primary Central Nervous System Lymphomas in Immunocompetent Individuals: Histology, Epstein-Barr Virus Genome, Ki-67 Proliferation Index, p53 and bcl-2 Gene Expression. Leuk Lymphoma 30:131–142CrossRefPubMed
30.
Zurück zum Zitat Pencina MJ, D’ Agostino RB, D’ Agostino RB, Vasan RS (2008) Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat Med 27:157–172CrossRefPubMed Pencina MJ, D’ Agostino RB, D’ Agostino RB, Vasan RS (2008) Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat Med 27:157–172CrossRefPubMed
31.
Zurück zum Zitat Pencina MJ, D’Agostino RB, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30:11–21CrossRefPubMed Pencina MJ, D’Agostino RB, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30:11–21CrossRefPubMed
32.
Zurück zum Zitat Warnke PC, Timmer J, Ostertag CB, Kopitzki K (2005) Capillary physiology and drug delivery in central nervous system lymphomas. Ann Neurol 57:136–139CrossRefPubMed Warnke PC, Timmer J, Ostertag CB, Kopitzki K (2005) Capillary physiology and drug delivery in central nervous system lymphomas. Ann Neurol 57:136–139CrossRefPubMed
33.
Zurück zum Zitat Walker-Samuel S, Leach MO, Collins DJ (2006) Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis. Phys Med Biol 51:3593CrossRefPubMed Walker-Samuel S, Leach MO, Collins DJ (2006) Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis. Phys Med Biol 51:3593CrossRefPubMed
34.
Zurück zum Zitat Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259CrossRefPubMed Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259CrossRefPubMed
Metadaten
Titel
Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient
verfasst von
Yoon Seong Choi
Ho-Joon Lee
Sung Soo Ahn
Jong Hee Chang
Seok-Gu Kang
Eui Hyun Kim
Se Hoon Kim
Seung-Koo Lee
Publikationsdatum
19.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 4/2017
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4484-2

Weitere Artikel der Ausgabe 4/2017

European Radiology 4/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.