Skip to main content
Erschienen in: European Radiology 9/2018

28.03.2018 | Computed Tomography

Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses

verfasst von: Nika Guberina, Michael Forsting, Adrian Ringelstein, Saravanabavaan Suntharalingam, Kai Nassenstein, Jens Theysohn, Axel Wetter

Erschienen in: European Radiology | Ausgabe 9/2018

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To examine radiation dose levels of CT-guided interventional procedures of chest, abdomen, spine and extremities on different CT-scanner generations at a large multicentre institute.

Materials and methods

1,219 CT-guided interventional biopsies of different organ regions ((A) abdomen (n=516), (B) chest (n=528), (C) spine (n=134) and (D) extremities (n=41)) on different CT-scanners ((I) SOMATOM-Definition-AS+, (II) Volume-Zoom, (III) Emotion6) were included from 2013–2016. Important CT-parameters and standard dose-descriptors were retrospectively examined. Additionally, effective dose and organ doses were calculated using Monte-Carlo simulation, following ICRP103.

Results

Overall, radiation doses for CT interventions are highly dependent on CT-scanner generation: the newer the CT scanner, the lower the radiation dose imparted to patients. Mean effective doses for each of four procedures on available scanners are: (A) (I) 9.3mSv versus (II) 13.9mSv (B) (I) 7.3mSv versus (III) 11.4mSv (C) (I) 6.3mSv versus (II) 7.4mSv (D) (I) 4.3mSv versus (II) 10.8mSv. Standard dose descriptors [standard deviation (SD); CT dose indexvol (CTDIvol); dose-length product (DLPbody); size-specific dose estimate (SSDE)] were also compared.

Conclusion

Effective dose, organ doses and SSDE for various CT-guided interventional biopsies on different CT-scanner generations following recommendations of the ICRP103 are provided. New CT-scanner generations involve markedly lower radiation doses versus older devices.

Key Points

• Effective dose, organ dose and SSDE are provided for CT-guided interventional examinations.
• These data allow identifying organs at risk of higher radiation dose.
• Detailed knowledge of radiation dose may contribute to a better individual risk-stratification.
• New CT-scanner generations involve markedly lower radiation doses compared to older devices.
Literatur
1.
Zurück zum Zitat Tsai IC, Tsai WL, Chen MC et al (2009) CT-guided core biopsy of lung lesions: a primer. Am J Roentgenol 193:1228–1235CrossRef Tsai IC, Tsai WL, Chen MC et al (2009) CT-guided core biopsy of lung lesions: a primer. Am J Roentgenol 193:1228–1235CrossRef
2.
Zurück zum Zitat Pao W, Kris MG, Iafrate AJ et al (2009) Integration of molecular profiling into the lung cancer clinic. Clin Cancer Res 15:5317–5322CrossRefPubMed Pao W, Kris MG, Iafrate AJ et al (2009) Integration of molecular profiling into the lung cancer clinic. Clin Cancer Res 15:5317–5322CrossRefPubMed
3.
Zurück zum Zitat Gevaert O, Xu J, Hoang CD et al (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data — methods and preliminary results. Radiology. 264:387–396CrossRefPubMedPubMedCentral Gevaert O, Xu J, Hoang CD et al (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data — methods and preliminary results. Radiology. 264:387–396CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMedPubMedCentral Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505CrossRefPubMedPubMedCentral Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med. 357:2277–2284CrossRefPubMed Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med. 357:2277–2284CrossRefPubMed
7.
Zurück zum Zitat Leng S, Christner JA, Carlson SK et al (2011) Radiation Dose Levels for Interventional CT Procedures. AJR Am J Roentgenol. 197:W97–W103CrossRefPubMed Leng S, Christner JA, Carlson SK et al (2011) Radiation Dose Levels for Interventional CT Procedures. AJR Am J Roentgenol. 197:W97–W103CrossRefPubMed
8.
Zurück zum Zitat Kloeckner R, dos Santos DP, Schneider J, Kara L, Dueber C, Pitton MB (2013) Radiation exposure in CT-guided interventions. Eur J Radiol. 82:2253–2257CrossRefPubMed Kloeckner R, dos Santos DP, Schneider J, Kara L, Dueber C, Pitton MB (2013) Radiation exposure in CT-guided interventions. Eur J Radiol. 82:2253–2257CrossRefPubMed
9.
Zurück zum Zitat McCollough CH, Leng S, Lifeng Y, Cody DD, Boone JM, McNitt-Gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316CrossRefPubMedPubMedCentral McCollough CH, Leng S, Lifeng Y, Cody DD, Boone JM, McNitt-Gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Brink JA, Morin RL (2012) Size-specific dose estimation for CT: how should it be used and what does it mean? Radiology 265:666–668CrossRefPubMed Brink JA, Morin RL (2012) Size-specific dose estimation for CT: how should it be used and what does it mean? Radiology 265:666–668CrossRefPubMed
11.
Zurück zum Zitat ICRP Publication 103 (2007) Recommendations of the International Commission on Radiological Protection. Annals of the ICRP Vol. 37 (2-4). Elsevier Science, Oxford ICRP Publication 103 (2007) Recommendations of the International Commission on Radiological Protection. Annals of the ICRP Vol. 37 (2-4). Elsevier Science, Oxford
12.
Zurück zum Zitat Guberina N, Forsting M, Suntharalingam S et al (2017) Radiation dose monitoring in the clinical routine. Rofo 189:356–360PubMed Guberina N, Forsting M, Suntharalingam S et al (2017) Radiation dose monitoring in the clinical routine. Rofo 189:356–360PubMed
13.
Zurück zum Zitat Guberina N, Suntharalingam S, Naßenstein, Forsting M, Theysohn J, Wetter A K et al (2017) Verification of organ doses calculated by a dose monitoring software tool based on Monte Carlo Simulation in thoracic CT protocols. Acta Radiol. https://doi.org/10.1177/0284185117716199 Guberina N, Suntharalingam S, Naßenstein, Forsting M, Theysohn J, Wetter A K et al (2017) Verification of organ doses calculated by a dose monitoring software tool based on Monte Carlo Simulation in thoracic CT protocols. Acta Radiol. https://​doi.​org/​10.​1177/​0284185117716199​
14.
Zurück zum Zitat Guberina N, Suntharalingam S, Naßenstein K et al (2016) Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans. Neuroradiology. 58:955-959. Guberina N, Suntharalingam S, Naßenstein K et al (2016) Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans. Neuroradiology. 58:955-959.
16.
Zurück zum Zitat Tzedakis A, Damilakis J, Perisinakis K, Karantanas A, Karabekios S, Gourtsoyiannis N (2007) Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys 34:1163–1175CrossRefPubMed Tzedakis A, Damilakis J, Perisinakis K, Karantanas A, Karabekios S, Gourtsoyiannis N (2007) Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys 34:1163–1175CrossRefPubMed
17.
Zurück zum Zitat Sinclair L, Griglock TM, Mench A (2015) Determining organ doses from ct with direct measurements in postmortem subjects: part 2--correlations with patient-specific parameters. Radiology. 277:471–476CrossRefPubMed Sinclair L, Griglock TM, Mench A (2015) Determining organ doses from ct with direct measurements in postmortem subjects: part 2--correlations with patient-specific parameters. Radiology. 277:471–476CrossRefPubMed
18.
Zurück zum Zitat Guberina N, Lechel U, Forsting M, Ringelstein A (2016) Efficacy of high-pitch CT protocols for radiation dose reduction. J Radiol Prot 36:N57–N66CrossRefPubMed Guberina N, Lechel U, Forsting M, Ringelstein A (2016) Efficacy of high-pitch CT protocols for radiation dose reduction. J Radiol Prot 36:N57–N66CrossRefPubMed
19.
Zurück zum Zitat Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236:565–571CrossRefPubMed Menke J (2005) Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 236:565–571CrossRefPubMed
Metadaten
Titel
Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses
verfasst von
Nika Guberina
Michael Forsting
Adrian Ringelstein
Saravanabavaan Suntharalingam
Kai Nassenstein
Jens Theysohn
Axel Wetter
Publikationsdatum
28.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 9/2018
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5350-1

Weitere Artikel der Ausgabe 9/2018

European Radiology 9/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.