Skip to main content
Erschienen in: European Radiology 9/2018

06.04.2018 | Neuro

Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach

verfasst von: Hie Bum Suh, Yoon Seong Choi, Sohi Bae, Sung Soo Ahn, Jong Hee Chang, Seok-Gu Kang, Eui Hyun Kim, Se Hoon Kim, Seung-Koo Lee

Erschienen in: European Radiology | Ausgabe 9/2018

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate the diagnostic performance of magnetic resonance (MR) radiomics-based machine-learning algorithms in differentiating primary central nervous system lymphoma (PCNSL) from non-necrotic atypical glioblastoma (GBM).

Methods

Seventy-seven patients (54 individuals with PCNSL and 23 with non-necrotic atypical GBM), diagnosed from January 2009 to April 2017, were enrolled in this retrospective study. A total of 6,366 radiomics features, including shape, volume, first-order, texture, and wavelet-transformed features, were extracted from multi-parametric (post-contrast T1- and T2-weighted, and fluid attenuation inversion recovery images) and multiregional (enhanced and non-enhanced) tumour volumes. These features were subjected to recursive feature elimination and random forest (RF) analysis with nested cross-validation. The diagnostic abilities of a radiomics machine-learning classifier, apparent diffusion coefficient (ADC), and three readers, who independently classified the tumours based on conventional MR sequences, were evaluated using receiver operating characteristic (ROC) analysis. Areas under the ROC curves (AUC) of the radiomics classifier, ADC value, and the radiologists were compared.

Results

The mean AUC of the radiomics classifier was 0.921 (95 % CI 0.825–0.990). The AUCs of the three readers and ADC were 0.707 (95 % CI 0.622–0.793), 0.759 (95 %CI 0.656–0.861), 0.695 (95 % CI 0.590–0.800) and 0.684 (95 % CI0.560–0.809), respectively. The AUC of the radiomics-based classifier was significantly higher than those of the three readers and ADC (p< 0.001 for all).

Conclusions

Large-scale radiomics with a machine-learning algorithm can be useful for differentiating PCNSL from atypical GBM, and yields a better diagnostic performance than human radiologists and ADC values.

Key Points

• Machine-learning algorithm radiomics can help to differentiate primary central PCNSL from GBM.
• This approach yields a higher diagnostic accuracy than visual analysis by radiologists.
• Radiomics can strengthen radiologists’ diagnostic decisions whenever conventional MRI sequences are available.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Haldorsen IS, Espeland A, Larsson EM (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol 32:984–992CrossRefPubMed Haldorsen IS, Espeland A, Larsson EM (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol 32:984–992CrossRefPubMed
2.
Zurück zum Zitat Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-Oncology 14(Suppl 5):v1–49CrossRefPubMedPubMedCentral Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro-Oncology 14(Suppl 5):v1–49CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
5.
Zurück zum Zitat Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272:843–850CrossRefPubMed Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272:843–850CrossRefPubMed
6.
Zurück zum Zitat Koeller KK, Smirniotopoulos JG, Jones RV (1997) Primary central nervous system lymphoma: radiologic-pathologic correlation. Radiographics 17:1497–1526CrossRefPubMed Koeller KK, Smirniotopoulos JG, Jones RV (1997) Primary central nervous system lymphoma: radiologic-pathologic correlation. Radiographics 17:1497–1526CrossRefPubMed
7.
Zurück zum Zitat Rees JH, Smirniotopoulos JG, Jones RV, Wong K (1996) Glioblastoma multiforme: radiologic-pathologic correlation. Radiographics 16:1413–1438 quiz 1462-1413CrossRefPubMed Rees JH, Smirniotopoulos JG, Jones RV, Wong K (1996) Glioblastoma multiforme: radiologic-pathologic correlation. Radiographics 16:1413–1438 quiz 1462-1413CrossRefPubMed
8.
Zurück zum Zitat Al-Okaili RN, Krejza J, Woo JH et al (2007) Intraaxial brain masses: MR imaging-based diagnostic strategy--initial experience. Radiology 243:539–550CrossRefPubMed Al-Okaili RN, Krejza J, Woo JH et al (2007) Intraaxial brain masses: MR imaging-based diagnostic strategy--initial experience. Radiology 243:539–550CrossRefPubMed
9.
Zurück zum Zitat Buhring U, Herrlinger U, Krings T, Thiex R, Weller M, Kuker W (2001) MRI features of primary central nervous system lymphomas at presentation. Neurology 57:393–396CrossRefPubMed Buhring U, Herrlinger U, Krings T, Thiex R, Weller M, Kuker W (2001) MRI features of primary central nervous system lymphomas at presentation. Neurology 57:393–396CrossRefPubMed
10.
Zurück zum Zitat Doskaliyev A, Yamasaki F, Ohtaki M et al (2012) Lymphomas and glioblastomas: differences in the apparent diffusion coefficient evaluated with high b-value diffusion-weighted magnetic resonance imaging at 3T. Eur J Radiol 81:339–344CrossRefPubMed Doskaliyev A, Yamasaki F, Ohtaki M et al (2012) Lymphomas and glioblastomas: differences in the apparent diffusion coefficient evaluated with high b-value diffusion-weighted magnetic resonance imaging at 3T. Eur J Radiol 81:339–344CrossRefPubMed
11.
Zurück zum Zitat Toh CH, Wei KC, Chang CN, Ng SH, Wong HF (2013) Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction. AJNR Am J Neuroradiol 34:1145–1149CrossRefPubMed Toh CH, Wei KC, Chang CN, Ng SH, Wong HF (2013) Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction. AJNR Am J Neuroradiol 34:1145–1149CrossRefPubMed
12.
Zurück zum Zitat Liao W, Liu Y, Wang X et al (2009) Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging. Acta Radiol 50:217–225CrossRefPubMed Liao W, Liu Y, Wang X et al (2009) Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging. Acta Radiol 50:217–225CrossRefPubMed
13.
Zurück zum Zitat Radbruch A, Wiestler B, Kramp L et al (2013) Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol 82:552–556CrossRefPubMed Radbruch A, Wiestler B, Kramp L et al (2013) Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol 82:552–556CrossRefPubMed
14.
Zurück zum Zitat Choi YS, Lee H-J, Ahn SS et al (2017) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient. Eur Radiol 27:1344–1351CrossRefPubMed Choi YS, Lee H-J, Ahn SS et al (2017) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient. Eur Radiol 27:1344–1351CrossRefPubMed
15.
Zurück zum Zitat Kickingereder P, Burth S, Wick A et al (2016) Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models. Radiology 280:880–889CrossRefPubMed Kickingereder P, Burth S, Wick A et al (2016) Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models. Radiology 280:880–889CrossRefPubMed
16.
Zurück zum Zitat Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings. Eur Radiol 27:4188–4197CrossRefPubMed Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings. Eur Radiol 27:4188–4197CrossRefPubMed
17.
18.
Zurück zum Zitat van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77:e104–e107CrossRefPubMed van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77:e104–e107CrossRefPubMed
19.
Zurück zum Zitat Kuhn M (2008) Building Predictive Models in R Using the caret Package. J Stat Softw 28:1–26CrossRef Kuhn M (2008) Building Predictive Models in R Using the caret Package. J Stat Softw 28:1–26CrossRef
20.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed
21.
Zurück zum Zitat Toh CH, Castillo M, Wong AM et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am J Neuroradiol 29:471–475CrossRefPubMed Toh CH, Castillo M, Wong AM et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am J Neuroradiol 29:471–475CrossRefPubMed
22.
Zurück zum Zitat Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T (2006) Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 58:394–403CrossRefPubMed Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T (2006) Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 58:394–403CrossRefPubMed
23.
Zurück zum Zitat Kickingereder P, Sahm F, Wiestler B et al (2014) Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. AJNR Am J Neuroradiol 35:1503–1508CrossRefPubMed Kickingereder P, Sahm F, Wiestler B et al (2014) Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. AJNR Am J Neuroradiol 35:1503–1508CrossRefPubMed
24.
Zurück zum Zitat Guo AC, Cummings TJ, Dash RC, Provenzale JM (2002) Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 224:177–183CrossRefPubMed Guo AC, Cummings TJ, Dash RC, Provenzale JM (2002) Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 224:177–183CrossRefPubMed
25.
Zurück zum Zitat Yamasaki T, Chen T, Hirai T, Murakami R (2013) Classification of cerebral lymphomas and glioblastomas featuring luminance distribution analysis. Comput Math Methods Med 2013:619658CrossRefPubMedPubMedCentral Yamasaki T, Chen T, Hirai T, Murakami R (2013) Classification of cerebral lymphomas and glioblastomas featuring luminance distribution analysis. Comput Math Methods Med 2013:619658CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning. AJNR Am J Neuroradiol 38:1145–1150CrossRefPubMed Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning. AJNR Am J Neuroradiol 38:1145–1150CrossRefPubMed
Metadaten
Titel
Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach
verfasst von
Hie Bum Suh
Yoon Seong Choi
Sohi Bae
Sung Soo Ahn
Jong Hee Chang
Seok-Gu Kang
Eui Hyun Kim
Se Hoon Kim
Seung-Koo Lee
Publikationsdatum
06.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 9/2018
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5368-4

Weitere Artikel der Ausgabe 9/2018

European Radiology 9/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.