Skip to main content
Erschienen in: European Radiology 10/2019

08.04.2019 | Cardiac

Deep learning–based image restoration algorithm for coronary CT angiography

verfasst von: Fuminari Tatsugami, Toru Higaki, Yuko Nakamura, Zhou Yu, Jian Zhou, Yujie Lu, Chikako Fujioka, Toshiro Kitagawa, Yasuki Kihara, Makoto Iida, Kazuo Awai

Erschienen in: European Radiology | Ausgabe 10/2019

Einloggen, um Zugang zu erhalten

Abstract

Objectives

The purpose of this study was to compare the image quality of coronary computed tomography angiography (CTA) subjected to deep learning–based image restoration (DLR) method with images subjected to hybrid iterative reconstruction (IR).

Methods

We enrolled 30 patients (22 men, 8 women) who underwent coronary CTA on a 320-slice CT scanner. The images were reconstructed with hybrid IR and with DLR. The image noise in the ascending aorta, left atrium, and septal wall of the ventricle was measured on all images and the contrast-to-noise ratio (CNR) in the proximal coronary arteries was calculated. We also generated CT attenuation profiles across the proximal coronary arteries and measured the width of the edge rise distance (ERD) and the edge rise slope (ERS). Two observers visually evaluated the overall image quality using a 4-point scale (1 = poor, 4 = excellent).

Results

On DLR images, the mean image noise was lower than that on hybrid IR images (18.5 ± 2.8 HU vs. 23.0 ± 4.6 HU, p < 0.01) and the CNR was significantly higher (p < 0.01). The mean ERD was significantly shorter on DLR than on hybrid IR images, whereas the mean ERS was steeper on DLR than on hybrid IR images. The mean image quality score for hybrid IR and DLR images was 2.96 and 3.58, respectively (p < 0.01).

Conclusions

DLR reduces the image noise and improves the image quality at coronary CTA.

Key Points

• Deep learning–based image restoration is a new technique that employs the deep convolutional neural network for image quality improvement.
• Deep learning–based restoration reduces the image noise and improves image quality at coronary CT angiography.
• This method may allow for a reduction in radiation exposure.
Literatur
1.
Zurück zum Zitat Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557CrossRefPubMed Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557CrossRefPubMed
2.
Zurück zum Zitat Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117CrossRefPubMed Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117CrossRefPubMed
3.
Zurück zum Zitat Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120CrossRefPubMed Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120CrossRefPubMed
4.
Zurück zum Zitat Dreyer KJ, Geis JR (2017) When machines think: radiology’s next frontier. Radiology 285:713–718CrossRefPubMed Dreyer KJ, Geis JR (2017) When machines think: radiology’s next frontier. Radiology 285:713–718CrossRefPubMed
5.
Zurück zum Zitat Kahn CE Jr (2017) From images to actions: opportunities for artificial intelligence in radiology. Radiology 285:719–720CrossRefPubMed Kahn CE Jr (2017) From images to actions: opportunities for artificial intelligence in radiology. Radiology 285:719–720CrossRefPubMed
6.
Zurück zum Zitat Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131CrossRefPubMed Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131CrossRefPubMed
7.
Zurück zum Zitat Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216CrossRefPubMed Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216CrossRefPubMed
8.
Zurück zum Zitat Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A (2017) Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 52:434–440CrossRefPubMed Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A (2017) Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 52:434–440CrossRefPubMed
9.
Zurück zum Zitat Yoshida H, Nappi J (2007) CAD in CT colonography without and with oral contrast agents: progress and challenges. Comput Med Imaging Graph 31:267–284CrossRefPubMed Yoshida H, Nappi J (2007) CAD in CT colonography without and with oral contrast agents: progress and challenges. Comput Med Imaging Graph 31:267–284CrossRefPubMed
10.
Zurück zum Zitat Bauer S, Wiest R, Nolte LP, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58:R97–R129 Bauer S, Wiest R, Nolte LP, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58:R97–R129
12.
Zurück zum Zitat Yang Q, Yan P, Zhang Y et al (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37:1348–1357CrossRefPubMedPubMedCentral Yang Q, Yan P, Zhang Y et al (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37:1348–1357CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Fan Y, Zamyatin A, Nakanishi S (2012) Noise simulation for low-dose computed tomography. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, pp 3641–3643 Fan Y, Zamyatin A, Nakanishi S (2012) Noise simulation for low-dose computed tomography. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, pp 3641–3643
14.
Zurück zum Zitat Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507CrossRefPubMed Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507CrossRefPubMed
15.
Zurück zum Zitat Lembcke A, Wiese TH, Schnorr J et al (2004) Image quality of noninvasive coronary angiography using multislice spiral computed tomography and electron-beam computed tomography: intraindividual comparison in an animal model. Invest Radiol 39:357–364CrossRefPubMed Lembcke A, Wiese TH, Schnorr J et al (2004) Image quality of noninvasive coronary angiography using multislice spiral computed tomography and electron-beam computed tomography: intraindividual comparison in an animal model. Invest Radiol 39:357–364CrossRefPubMed
16.
Zurück zum Zitat Tatsugami F, Husmann L, Herzog BA et al (2009) Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. AJR Am J Roentgenol 192:635–638CrossRefPubMed Tatsugami F, Husmann L, Herzog BA et al (2009) Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. AJR Am J Roentgenol 192:635–638CrossRefPubMed
17.
Zurück zum Zitat Tatsugami F, Higaki T, Sakane H et al (2017) Coronary artery stent evaluation with model-based iterative reconstruction at coronary CT angiography. Acad Radiol 24:975–981CrossRefPubMed Tatsugami F, Higaki T, Sakane H et al (2017) Coronary artery stent evaluation with model-based iterative reconstruction at coronary CT angiography. Acad Radiol 24:975–981CrossRefPubMed
18.
Zurück zum Zitat Nelson RC, Feuerlein S, Boll DT (2011) New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr 5:286–292CrossRefPubMed Nelson RC, Feuerlein S, Boll DT (2011) New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr 5:286–292CrossRefPubMed
19.
Zurück zum Zitat Geyer LL, Schoepf UJ, Meinel FG et al (2015) State of the art: iterative CT reconstruction techniques. Radiology 276:339–357CrossRefPubMed Geyer LL, Schoepf UJ, Meinel FG et al (2015) State of the art: iterative CT reconstruction techniques. Radiology 276:339–357CrossRefPubMed
20.
Zurück zum Zitat Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119CrossRefPubMed Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119CrossRefPubMed
21.
Zurück zum Zitat Suzuki S, Machida H, Tanaka I, Ueno E (2013) Vascular diameter measurement in CT angiography: comparison of model-based iterative reconstruction and standard filtered back projection algorithms in vitro. AJR Am J Roentgenol 200:652–657CrossRefPubMed Suzuki S, Machida H, Tanaka I, Ueno E (2013) Vascular diameter measurement in CT angiography: comparison of model-based iterative reconstruction and standard filtered back projection algorithms in vitro. AJR Am J Roentgenol 200:652–657CrossRefPubMed
Metadaten
Titel
Deep learning–based image restoration algorithm for coronary CT angiography
verfasst von
Fuminari Tatsugami
Toru Higaki
Yuko Nakamura
Zhou Yu
Jian Zhou
Yujie Lu
Chikako Fujioka
Toshiro Kitagawa
Yasuki Kihara
Makoto Iida
Kazuo Awai
Publikationsdatum
08.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 10/2019
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06183-y

Weitere Artikel der Ausgabe 10/2019

European Radiology 10/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.