Skip to main content
Erschienen in: European Radiology 12/2021

29.05.2021 | Nuclear Medicine

Brain metabolic characteristics distinguishing typical and atypical benign epilepsy with centro-temporal spikes

verfasst von: Yuting Li, Jianhua Feng, Teng Zhang, Kexin Shi, Yao Ding, Xiaohui Zhang, Chentao Jin, Jiayue Pan, Le Xue, Yi Liao, Xiawan Wang, Cheng Zhuo, Hong Zhang, Mei Tian

Erschienen in: European Radiology | Ausgabe 12/2021

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Atypical benign epilepsy with centro-temporal spikes (BECTS) have less favorable outcomes than typical BECTS, and thus should be accurately identified for adequate treatment. We aimed to investigate the glucose metabolic differences between typical and atypical BECTS using 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET) imaging, and explore whether these differences can help distinguish.

Methods

Forty-six patients with typical BECTS, 31 patients with atypical BECTS and 23 controls who underwent [18F]FDG PET examination were retrospectively involved. Absolute asymmetry index (|AI|) was applied to evaluate the severity of metabolic abnormality. Glucose metabolic differences were investigated among typical BECTS, atypical BECTS, and controls by using statistical parametric mapping (SPM). Logistic regression analyses were performed based on clinical, PET, and hybrid features.

Results

The |AI| was found significantly higher in atypical BECTS than in typical BECTS (p = 0.040). Atypical BECTS showed more hypo-metabolism regions than typical BECTS, mainly located in the fronto-temporo-parietal cortex. The PET model had significantly higher area under the curve (AUC) than the clinical model (0.91 vs. 0.70, p = 0.006). The hybrid model had the highest sensitivity (0.90), specificity (0.85), and accuracy (0.87) of all three models.

Conclusions

Atypical BECTS showed more widespread and severe hypo-metabolism than typical BECTS, depending on which the two groups can be well distinguished. The combination of metabolic characteristics and clinical variables has the potential to be used clinically to distinguish between typical and atypical BECTS.

Key Points

• Distinguishing between typical and atypical BECTS is very important for the formulation of treatment regimens in clinical practice.
• Atypical BECTS showed more widespread and severe hypo-metabolism than typical BECTS, mainly located in the fronto-temporo-parietal cortex.
• The logistic regression model based on PET outperformed that based on clinical characteristics in classification of typical and atypical BECTS, and the hybrid model achieved the best classification performance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nickels KC, Zaccariello MJ, Hamiwka LD, Wirrell EC (2016) Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol 12:465–476PubMedCrossRef Nickels KC, Zaccariello MJ, Hamiwka LD, Wirrell EC (2016) Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol 12:465–476PubMedCrossRef
2.
Zurück zum Zitat Wickens S, Bowden SC, D’Souza W (2017) Cognitive functioning in children with self-limited epilepsy with centrotemporal spikes: a systematic review and meta-analysis. Epilepsia 58:1673–1685PubMedCrossRef Wickens S, Bowden SC, D’Souza W (2017) Cognitive functioning in children with self-limited epilepsy with centrotemporal spikes: a systematic review and meta-analysis. Epilepsia 58:1673–1685PubMedCrossRef
3.
Zurück zum Zitat Tovia E, Goldberg-Stern H, Ben Zeev B et al (2011) The prevalence of atypical presentations and comorbidities of benign childhood epilepsy with centrotemporal spikes. Epilepsia 52:1483–1488PubMedCrossRef Tovia E, Goldberg-Stern H, Ben Zeev B et al (2011) The prevalence of atypical presentations and comorbidities of benign childhood epilepsy with centrotemporal spikes. Epilepsia 52:1483–1488PubMedCrossRef
4.
Zurück zum Zitat Verrotti A, Latini G, Trotta D et al (2002) Typical and atypical rolandic epilepsy in childhood: A follow-up study. Pediatr Neurol 26:26–29PubMedCrossRef Verrotti A, Latini G, Trotta D et al (2002) Typical and atypical rolandic epilepsy in childhood: A follow-up study. Pediatr Neurol 26:26–29PubMedCrossRef
6.
Zurück zum Zitat Filippini M, Boni A, Giannotta M et al (2015) Comparing cortical auditory processing in children with typical and atypical benign epilepsy with centrotemporal spikes: electrophysiologic evidence of the role of non-rapid eye movement sleep abnormalities. Epilepsia 56:726–734PubMedCrossRef Filippini M, Boni A, Giannotta M et al (2015) Comparing cortical auditory processing in children with typical and atypical benign epilepsy with centrotemporal spikes: electrophysiologic evidence of the role of non-rapid eye movement sleep abnormalities. Epilepsia 56:726–734PubMedCrossRef
7.
Zurück zum Zitat Northcott E, Connolly AM, Berroya A et al (2005) The neuropsychological and language profile of children with benign rolandic epilepsy. Epilepsia 46:924–930PubMedCrossRef Northcott E, Connolly AM, Berroya A et al (2005) The neuropsychological and language profile of children with benign rolandic epilepsy. Epilepsia 46:924–930PubMedCrossRef
8.
Zurück zum Zitat Datta A, Sinclair DB (2007) Benign epilepsy of childhood with rolandic spikes: typical and atypical variants. Pediatr Neurol 36:141–145PubMedCrossRef Datta A, Sinclair DB (2007) Benign epilepsy of childhood with rolandic spikes: typical and atypical variants. Pediatr Neurol 36:141–145PubMedCrossRef
9.
Zurück zum Zitat Garcia-Ramos C, Jackson DC, Lin JJ et al (2015) Cognition and brain development in children with benign epilepsy with centrotemporal spikes. Epilepsia 56:1615–1622PubMedPubMedCentralCrossRef Garcia-Ramos C, Jackson DC, Lin JJ et al (2015) Cognition and brain development in children with benign epilepsy with centrotemporal spikes. Epilepsia 56:1615–1622PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Adebimpe A, Bourel-Ponchel E, Wallois F (2018) Identifying neural drivers of benign childhood epilepsy with centrotemporal spikes. Neuroimage Clin 17:739–750PubMedCrossRef Adebimpe A, Bourel-Ponchel E, Wallois F (2018) Identifying neural drivers of benign childhood epilepsy with centrotemporal spikes. Neuroimage Clin 17:739–750PubMedCrossRef
13.
Zurück zum Zitat Boling WW, Lancaster M, Kraszpulski M et al (2008) Fluorodeoxyglucose-positron emission tomographic imaging for the diagnosis of mesial temporal lobe epilepsy. Neurosurgery 63:1130–1138PubMedCrossRef Boling WW, Lancaster M, Kraszpulski M et al (2008) Fluorodeoxyglucose-positron emission tomographic imaging for the diagnosis of mesial temporal lobe epilepsy. Neurosurgery 63:1130–1138PubMedCrossRef
15.
Zurück zum Zitat Zhu Y, Feng J, Wu S et al (2017) Glucose metabolic profile by visual assessment combined with statistical parametric mapping analysis in pediatric patients with epilepsy. J Nucl Med 58:1293–1299PubMedCrossRef Zhu Y, Feng J, Wu S et al (2017) Glucose metabolic profile by visual assessment combined with statistical parametric mapping analysis in pediatric patients with epilepsy. J Nucl Med 58:1293–1299PubMedCrossRef
16.
Zurück zum Zitat Cahill V, Sinclair B, Malpas CB et al (2019) Metabolic patterns and seizure outcomes following anterior temporal lobectomy. Ann Neurol 85:241–250PubMedCrossRef Cahill V, Sinclair B, Malpas CB et al (2019) Metabolic patterns and seizure outcomes following anterior temporal lobectomy. Ann Neurol 85:241–250PubMedCrossRef
17.
Zurück zum Zitat Decoo D, Destée A (1997) PET studies in epilepsy. Acta Neurol Belg 97:196–199PubMed Decoo D, Destée A (1997) PET studies in epilepsy. Acta Neurol Belg 97:196–199PubMed
18.
Zurück zum Zitat Zhang Q, Yang F, Hu Z et al (2017) Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes. Eur Radiol 27:2137–2145PubMedCrossRef Zhang Q, Yang F, Hu Z et al (2017) Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes. Eur Radiol 27:2137–2145PubMedCrossRef
19.
Zurück zum Zitat Varrone A, Asenbaum S, Vander Borght T et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110PubMedCrossRef Varrone A, Asenbaum S, Vander Borght T et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110PubMedCrossRef
20.
Zurück zum Zitat Gelfand MJ, Parisi MT, Treves ST (2011) Pediatric radiopharmaceutical administered doses: 2010 North American Consensus Guidelines. J Nucl Med 52:318–322PubMedCrossRef Gelfand MJ, Parisi MT, Treves ST (2011) Pediatric radiopharmaceutical administered doses: 2010 North American Consensus Guidelines. J Nucl Med 52:318–322PubMedCrossRef
21.
Zurück zum Zitat Fonov V, Evans AC, Botteron K et al (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327PubMedCrossRef Fonov V, Evans AC, Botteron K et al (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327PubMedCrossRef
22.
Zurück zum Zitat De Blasi B, Barnes A, Galazzo IB et al (2018) Age-specific 18F-FDG image processing pipelines and analysis are essential for individual mapping of seizure foci in pediatric patients with intractable epilepsy. J Nucl Med 59:1590–1596PubMedPubMedCentralCrossRef De Blasi B, Barnes A, Galazzo IB et al (2018) Age-specific 18F-FDG image processing pipelines and analysis are essential for individual mapping of seizure foci in pediatric patients with intractable epilepsy. J Nucl Med 59:1590–1596PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Boscolo Galazzo I, Mattoli MV, Pizzini FB et al (2016) Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of 18F-FDG PET and arterial spin labeling. Neuroimage Clin 11:648–657PubMedPubMedCentralCrossRef Boscolo Galazzo I, Mattoli MV, Pizzini FB et al (2016) Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of 18F-FDG PET and arterial spin labeling. Neuroimage Clin 11:648–657PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Gaillard WD, Weinstein S, Conry J et al (2007) Prognosis of children with partial epilepsy: MRI and serial 18FDG-PET. Neurology 68:655–659PubMedCrossRef Gaillard WD, Weinstein S, Conry J et al (2007) Prognosis of children with partial epilepsy: MRI and serial 18FDG-PET. Neurology 68:655–659PubMedCrossRef
25.
Zurück zum Zitat Wang KL, Hu W, Liu TH et al (2019) Metabolic covariance networks combining graph theory measuring aberrant topological patterns in mesial temporal lobe epilepsy. CNS Neurosci Ther 25:396–408PubMedCrossRef Wang KL, Hu W, Liu TH et al (2019) Metabolic covariance networks combining graph theory measuring aberrant topological patterns in mesial temporal lobe epilepsy. CNS Neurosci Ther 25:396–408PubMedCrossRef
26.
Zurück zum Zitat Spetsieris PG, Eidelberg D (2011) Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. Neuroimage 54:2899–2914PubMedCrossRef Spetsieris PG, Eidelberg D (2011) Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: methodological issues. Neuroimage 54:2899–2914PubMedCrossRef
27.
Zurück zum Zitat Shinde A, Sahu A, Apley D, Runger G (2014) Preimages for variation patterns from kernel PCA and bagging. IIE Trans 46:429–456CrossRef Shinde A, Sahu A, Apley D, Runger G (2014) Preimages for variation patterns from kernel PCA and bagging. IIE Trans 46:429–456CrossRef
28.
Zurück zum Zitat Guedj E, Bonini F, Gavaret M et al (2015) 18FDG-PET in different subtypes of temporal lobe epilepsy: SEEG validation and predictive value. Epilepsia 56:414–421PubMedCrossRef Guedj E, Bonini F, Gavaret M et al (2015) 18FDG-PET in different subtypes of temporal lobe epilepsy: SEEG validation and predictive value. Epilepsia 56:414–421PubMedCrossRef
29.
Zurück zum Zitat Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808CrossRefPubMed Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808CrossRefPubMed
30.
Zurück zum Zitat Focke NK, Yogarajah M, Symms MR et al (2012) Automated MR image classification in temporal lobe epilepsy. Neuroimage 59:356–362PubMedCrossRef Focke NK, Yogarajah M, Symms MR et al (2012) Automated MR image classification in temporal lobe epilepsy. Neuroimage 59:356–362PubMedCrossRef
31.
Zurück zum Zitat Siniatchkin M, Capovilla G (2013) Functional neuroimaging in epileptic encephalopathies. Epilepsia 54:27–33PubMedCrossRef Siniatchkin M, Capovilla G (2013) Functional neuroimaging in epileptic encephalopathies. Epilepsia 54:27–33PubMedCrossRef
32.
Zurück zum Zitat Ji GJ, Yu Y, Miao HH et al (2017) Decreased network efficiency in benign epilepsy with centrotemporal spikes. Radiology 283:186–194PubMedCrossRef Ji GJ, Yu Y, Miao HH et al (2017) Decreased network efficiency in benign epilepsy with centrotemporal spikes. Radiology 283:186–194PubMedCrossRef
33.
Zurück zum Zitat Uliel-Sibony S, Kramer U (2015) Benign childhood epilepsy with centro-temporal spikes (BCECTSs), electrical status epilepticus in sleep (ESES), and academic decline - How aggressive should we be? Epilepsy Behav 44:117–120PubMedCrossRef Uliel-Sibony S, Kramer U (2015) Benign childhood epilepsy with centro-temporal spikes (BCECTSs), electrical status epilepticus in sleep (ESES), and academic decline - How aggressive should we be? Epilepsy Behav 44:117–120PubMedCrossRef
34.
Zurück zum Zitat Leisman G, Braun-Benjamin O, Melillo R (2014) Cognitive-motor interactions of the basal ganglia in development. Front Syst Neurosci 8:1–18CrossRef Leisman G, Braun-Benjamin O, Melillo R (2014) Cognitive-motor interactions of the basal ganglia in development. Front Syst Neurosci 8:1–18CrossRef
35.
Zurück zum Zitat Lin JJ, Riley JD, Hsu DA et al (2012) Striatal hypertrophy and its cognitive effects in new-onset benign epilepsy with centrotemporal spikes. Epilepsia 53:677–685PubMedPubMedCentralCrossRef Lin JJ, Riley JD, Hsu DA et al (2012) Striatal hypertrophy and its cognitive effects in new-onset benign epilepsy with centrotemporal spikes. Epilepsia 53:677–685PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Xiao F, Zhou D, Nordli D (2016) Real-time effects of centrotemporal spikes on cognition in rolandic epilepsy: an EEG-fMRI study. Neurology 87:551–552PubMedCrossRef Xiao F, Zhou D, Nordli D (2016) Real-time effects of centrotemporal spikes on cognition in rolandic epilepsy: an EEG-fMRI study. Neurology 87:551–552PubMedCrossRef
37.
Zurück zum Zitat Leff AP, Schofield TM, Crinion JT et al (2009) The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke. Brain 132:3401–3410PubMedPubMedCentralCrossRef Leff AP, Schofield TM, Crinion JT et al (2009) The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke. Brain 132:3401–3410PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Ciumas C, Montavont A, Ilski F et al (2020) Neural correlates of verbal working memory in children with epilepsy with centro-temporal spikes. Neuroimage Clin 28:102392PubMedPubMedCentralCrossRef Ciumas C, Montavont A, Ilski F et al (2020) Neural correlates of verbal working memory in children with epilepsy with centro-temporal spikes. Neuroimage Clin 28:102392PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Kumar A, Juhász C, Asano E et al (2010) Objective detection of epileptic foci by 18F-FDG PET in children undergoing epilepsy surgery. J Nucl Med 51:1901–1907 Kumar A, Juhász C, Asano E et al (2010) Objective detection of epileptic foci by 18F-FDG PET in children undergoing epilepsy surgery. J Nucl Med 51:1901–1907
40.
Zurück zum Zitat Seo JH, Holland K, Rose D et al (2011) Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76:41–48PubMedPubMedCentralCrossRef Seo JH, Holland K, Rose D et al (2011) Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76:41–48PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Focke NK, Yogarajah M, Symms MR et al (2012) Automated MR image classi fi cation in temporal lobe epilepsy. Neuroimage 59:356–362PubMedCrossRef Focke NK, Yogarajah M, Symms MR et al (2012) Automated MR image classi fi cation in temporal lobe epilepsy. Neuroimage 59:356–362PubMedCrossRef
42.
Zurück zum Zitat Alexander GE, Moeller JR (1994) Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease. Hum Brain Mapp 2:79–94CrossRef Alexander GE, Moeller JR (1994) Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease. Hum Brain Mapp 2:79–94CrossRef
43.
Zurück zum Zitat Zarinabad N, Wilson M, Gill SK et al (2017) Multiclass imbalance learning: improving classification of pediatric brain tumors from magnetic resonance spectroscopy. Magn Reson Med 77:2114–2124PubMedCrossRef Zarinabad N, Wilson M, Gill SK et al (2017) Multiclass imbalance learning: improving classification of pediatric brain tumors from magnetic resonance spectroscopy. Magn Reson Med 77:2114–2124PubMedCrossRef
44.
Zurück zum Zitat Duchesnay E, Cachia A, Boddaert N et al (2011) Feature selection and classification of imbalanced datasets. Application to PET images of children with autistic spectrum disorders. Neuroimage 57:1003–1014PubMedCrossRef Duchesnay E, Cachia A, Boddaert N et al (2011) Feature selection and classification of imbalanced datasets. Application to PET images of children with autistic spectrum disorders. Neuroimage 57:1003–1014PubMedCrossRef
45.
Zurück zum Zitat van Klink NEC, van’t Klooster MA, Leijten FSS et al (2016) Ripples on rolandic spikes: a marker of epilepsy severity. Epilepsia 57:1179–1189PubMedCrossRef van Klink NEC, van’t Klooster MA, Leijten FSS et al (2016) Ripples on rolandic spikes: a marker of epilepsy severity. Epilepsia 57:1179–1189PubMedCrossRef
46.
Zurück zum Zitat Tenney JR, Rozhkov L, Horn P et al (2014) Cerebral glucose hypometabolism is associated with mitochondrial dysfunction in patients with intractable epilepsy and cortical dysplasia. Epilepsia 55:1415–1422PubMedCrossRef Tenney JR, Rozhkov L, Horn P et al (2014) Cerebral glucose hypometabolism is associated with mitochondrial dysfunction in patients with intractable epilepsy and cortical dysplasia. Epilepsia 55:1415–1422PubMedCrossRef
47.
Zurück zum Zitat Stanescu L, Ishak GE, Khanna PC et al (2013) FDG PET of the brain in pediatric patients: Imaging spectrum with MR imaging correlation. Radiographics 33:1279–1303PubMedCrossRef Stanescu L, Ishak GE, Khanna PC et al (2013) FDG PET of the brain in pediatric patients: Imaging spectrum with MR imaging correlation. Radiographics 33:1279–1303PubMedCrossRef
48.
Zurück zum Zitat Nicolai J, Van Der Linden I, Arends JBAM et al (2007) EEG characteristics related to educational impairments in children with benign childhood epilepsy with centrotemporal spikes. Epilepsia 48:2093–2100PubMedCrossRef Nicolai J, Van Der Linden I, Arends JBAM et al (2007) EEG characteristics related to educational impairments in children with benign childhood epilepsy with centrotemporal spikes. Epilepsia 48:2093–2100PubMedCrossRef
49.
Zurück zum Zitat Van Bogaert P, Wikler D, Damhaut P et al (1998) Cerebral glucose metabolism and centrotemporal spikes. Epilepsy Res 29:123–127PubMedCrossRef Van Bogaert P, Wikler D, Damhaut P et al (1998) Cerebral glucose metabolism and centrotemporal spikes. Epilepsy Res 29:123–127PubMedCrossRef
51.
Zurück zum Zitat Lyoo CH, Ikawa M, Liow JS et al (2015) Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med 56:701–706PubMedCrossRef Lyoo CH, Ikawa M, Liow JS et al (2015) Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med 56:701–706PubMedCrossRef
52.
Zurück zum Zitat Kim SH, Lim SC, Kim W et al (2015) Changes in background electroencephalography and regional cerebral glucose metabolism in focal epilepsy patients after 1-month administration of levetiracetam. Neuropsychiatr Dis Treat 11:215–223PubMedPubMedCentral Kim SH, Lim SC, Kim W et al (2015) Changes in background electroencephalography and regional cerebral glucose metabolism in focal epilepsy patients after 1-month administration of levetiracetam. Neuropsychiatr Dis Treat 11:215–223PubMedPubMedCentral
Metadaten
Titel
Brain metabolic characteristics distinguishing typical and atypical benign epilepsy with centro-temporal spikes
verfasst von
Yuting Li
Jianhua Feng
Teng Zhang
Kexin Shi
Yao Ding
Xiaohui Zhang
Chentao Jin
Jiayue Pan
Le Xue
Yi Liao
Xiawan Wang
Cheng Zhuo
Hong Zhang
Mei Tian
Publikationsdatum
29.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2021
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08051-0

Weitere Artikel der Ausgabe 12/2021

European Radiology 12/2021 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.