Skip to main content
Log in

Ion Torrent sequencing for conducting genome-wide scans for mutation mapping analysis

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Mutation mapping in mice can be readily accomplished by genome wide segregation analysis of polymorphic DNA markers. In this study, we showed the efficacy of Ion Torrent next generation sequencing for conducting genome-wide scans to map and identify a mutation causing congenital heart disease in a mouse mutant, Bishu, recovered from a mouse mutagenesis screen. The Bishu mutant line generated in a C57BL/6J (B6) background was intercrossed with another inbred strain, C57BL/10J (B10), and the resulting B6/B10 hybrid offspring were intercrossed to generate mutants used for the mapping analysis. For each mutant sample, a panel of 123 B6/B10 polymorphic SNPs distributed throughout the mouse genome was PCR amplified, bar coded, and then pooled to generate a single library used for Ion Torrent sequencing. Sequencing carried out using the 314 chip yielded >600,000 usable reads. These were aligned and mapped using a custom bioinformatics pipeline. Each SNP was sequenced to a depth >500×, allowing accurate automated calling of the B6/B10 genotypes. This analysis mapped the mutation in Bishu to an interval on the proximal region of mouse chromosome 4. This was confirmed by parallel capillary sequencing of the 123 polymorphic SNPs. Further analysis of genes in the map interval identified a splicing mutation in Dnaic1 c.204+1G>A, an intermediate chain dynein, as the disease causing mutation in Bishu. Overall, our experience shows Ion Torrent amplicon sequencing is high throughput and cost effective for conducting genome-wide mapping analysis and is easily scalable for other high volume genotyping analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold CN, Xia Y, Lin P, Ross C, Schwander M, Smart NG, Muller U, Beutler B (2011) Rapid identification of a disease allele in mouse through whole genome sequencing and bulk segregation analysis. Genetics 187:633–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bode VC, McDonald JD, Guenet JL, Simon D (1988) hph-1: a mouse mutant with hereditary hyperphenylalaninemia induced by ethylnitrosourea mutagenesis. Genetics 118:299–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bull KR, Rimmer AJ, Siggs OM, Miosge LA, Roots CM, Enders A, Bertram EM, Crockford TL, Whittle B, Potter PK, Simon MM, Mallon AM, Brown SD, Beutler B, Goodnow CC, Lunter G, Cornall RJ (2013) Unlocking the bottleneck in forward genetics using whole-genome sequencing and identity by descent to isolate causative mutations. PLoS Genet 9:e1003219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caruana G, Farlie PG, Hart AH, Bagheri-Fam S, Wallace MJ, Dobbie MS, Gordon CT, Miller KA, Whittle B, Abud HE, Arkell RM, Cole TJ, Harley VR, Smyth IM, Bertram JF (2013) Genome-wide ENU mutagenesis in combination with high density SNP analysis and exome sequencing provides rapid identification of novel mouse models of developmental disease. PLoS One 8:e55429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan M, Ji SM, Yeo ZX, Gan L, Yap E, Yap YS, Ng R, Tan PH, Ho GH, Ang P, Lee AS (2012) Development of a next-generation sequencing method for BRCA mutation screening: a comparison between a high-throughput and a benchtop platform. J Mol Diagn 14:602–612

    Article  CAS  PubMed  Google Scholar 

  • Daum LT, Rodriguez JD, Worthy SA, Ismail NA, Omar SV, Dreyer AW, Fourie PB, Hoosen AA, Chambers JP, Fischer GW (2012) Next-generation ion torrent sequencing of drug resistance mutations in Mycobacterium tuberculosis strains. J Clin Microbiol 50:3831–3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Damerla R, Cui C, Gabriel G, Liu X, Gibbs B, Francis R, LI Y, Chatterjee B, Michaud J, Pazour G, Lo C (2013) Abstract#3162W, Mutation in the mouse homolog of C5ORF42 disrupts ciliogenesis and causes cerebellar defects and other Joubert Syndrome phenotypes associated with the disruption of Shh signaling. In: 63rd Annual meeting of the American Society of Human Genetics, Boston, 23 Oct 2013

  • Francis RJ, Christopher A, Devine WA, Ostrowski L, Lo C (2012) Congenital heart disease and the specification of left–right asymmetry. Am J Physiol Heart Circ Physiol 302:H2102–H2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guenet JL (2004) Chemical mutagenesis of the mouse genome: an overview. Genetica 122:9–24

    Article  CAS  PubMed  Google Scholar 

  • Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, Lalau G, Bouvagnet P (2001) Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 68:1030–1035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ (2013) MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res 23:687–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadeau JH (2001) Modifier genes in mice and humans. Nat Rev Genet 2:165–174

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus IM, Beier DR (1998) Efficient localization of mutations by interval haplotype analysis. Mamm Genome 9:150–154

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski LE, Yin W, Rogers TD, Busalacchi KB, Chua M, O’Neal WK, Grubb BR (2010) Conditional deletion of dnaic1 in a murine model of primary ciliary dyskinesia causes chronic rhinosinusitis. Am J Respir Cell Mol Biol 43:55–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otto EA, Ramaswami G, Janssen S, Chaki M, Allen SJ, Zhou W, Airik R, Hurd TW, Ghosh AK, Wolf MT, Hoppe B, Neuhaus TJ, Bockenhauer D, Milford DV, Soliman NA, Antignac C, Saunier S, Johnson CA, Hildebrandt F (2011) Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy. J Med Genet 48:105–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, Clement A, Goossens M, Amselem S, Duriez B (1999) Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 65:1508–1519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Leatherbury L, Rosenthal J, Yu Q, Pappas MA, Wessels A, Lucas J, Siegfried B, Chatterjee B, Svenson K, Lo CW (2005) Cardiovascular phenotyping of fetal mice by noninvasive high-frequency ultrasound facilitates recovery of ENU-induced mutations causing congenital cardiac and extracardiac defects. Physiol Genomics 24:23–36

    Article  PubMed  Google Scholar 

  • Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, Levinson D, Fernandez-Vina MA, Davis RW, Davis MM, Mindrinos M (2012) High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci USA 109:8676–8681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia Y, Won S, Du X, Lin P, Ross C, La Vine D, Wiltshire S, Leiva G, Vidal SM, Whittle B, Goodnow CC, Koziol J, Moresco EM, Beutler B (2010) Bulk segregation mapping of mutations in closely related strains of mice. Genetics 186:1139–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Q, Shen Y, Chatterjee B, Siegfried BH, Leatherbury L, Rosenthal J, Lucas JF, Wessels A, Spurney CF, Wu YJ, Kirby ML, Svenson K, Lo CW (2004) ENU induced mutations causing congenital cardiovascular anomalies. Development 131:6211–6223

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Alpert D, Francis R, Chatterjee B, Yu Q, Tansey T, Sabol SL, Cui C, Bai Y, Koriabine M, Yoshinaga Y, Cheng JF, Chen F, Martin J, Schackwitz W, Gunn TM, Kramer KL, De Jong PJ, Pennacchio LA, Lo CW (2009) Massively parallel sequencing identifies the gene Megf8 with ENU-induced mutation causing heterotaxy. Proc Natl Acad Sci USA 106:3219–3224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH Grants U01-HL098180 and P30-HL101322. We thank members of the Lo laboratory, Ashok Srinivasan, Mark Kimak and Yang Li for technical support. We thank Dr. Bruce Beutler and Yu Xia for helpful discussions and providing information on the panel of B6/B10 SNP markers ahead of publication.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia W. Lo.

Additional information

Availability of supporting data

The raw Ion Torrent PGM sequencing data sets supporting the results of this article are available for download from the following link: http://apps.devbio.pitt.edu/Genome/RawData_PGM.zip.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2013_9494_MOESM1_ESM.mov

Videomicroscopy show ciliary motion in the tracheal and ependymal tissue of wildtype (+/+) vs. homozygous Dnaic1 mutant (m/m) mice. The wildtype airway and ependymal tissue showed rapid synchronous ciliary motion, while in the homozygous mutant, the cilia were either immotile or exhibited only slow dyskinetic motion. Beads added to the medium show strong flow was generated in the wildtype, but not in the homozygous mutant trachea and ependymal epithelia

Supplementary material 2 (XLSX 58 kb)

Supplementary material 3 (XLSX 62 kb)

Supplementary material 4 (XLSX 62 kb)

Supplementary material 5 (XLSX 66 kb)

Supplementary material 6 (XLSX 65 kb)

Supplementary material 7 (XLSX 66 kb)

Supplementary material 8 (XLSX 66 kb)

Supplementary material 9 (XLSX 66 kb)

Supplementary material 10 (XLSX 60 kb)

Supplementary material 11 (XLSX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damerla, R.R., Chatterjee, B., Li, Y. et al. Ion Torrent sequencing for conducting genome-wide scans for mutation mapping analysis. Mamm Genome 25, 120–128 (2014). https://doi.org/10.1007/s00335-013-9494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9494-7

Keywords

Navigation