Skip to main content
Log in

Selektive Retinatherapie

Methodik, Technik und Online-Dosimetrie

Selective retina therapy

Methods, technique, and online dosimetry

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die selektive Retinatherapie (SRT) wird zurzeit als neue, schonende Laserbehandlungsmethode für verschiedene Erkrankungen des Augenhintergrunds evaluiert, die mit einer reduzierten Funktion des retinalen Pigmentepithels (RPE) assoziiert werden. Mit der SRT wird im bestrahlten Areal lediglich das RPE behandelt, ohne die angrenzende neurosensorische Netzhaut mit den Photorezeptoren und die unter dem RPE liegende Aderhaut zu schädigen. Die Therapie führt idealerweise zu einer Regeneration des RPE und einem gesteigerten Metabolismus am chorioretinalen Übergang. Im Gegensatz zur etablierten Laserphotokoagulation, bei der die bestrahlten und umgebenden Areale der Netzhaut komplett verödet werden, bleiben bei der SRT Skotome vollständig aus. Der Artikel gibt eine Übersicht über die Methodik und die Mechanismen zu selektiven RPE-Effekten und resümiert In-vitro- und vorklinische Ergebnisse zur Bandbreite der Selektivität für verschiedene Bestrahlungsparameter. Die Beschreibung einer optoakustischen Methode zur Online-Visualisierung der optisch nicht sichtbaren Effekte und damit zur Dosimetrie ohne angiographische Kontrolle runden die Übersicht ab.

Abstract

Selective retina therapy (SRT) is currently under evaluation, as a new and very subtle laser method, for the treatment of retinal disorders associated with a degradation of the retinal pigmentary epithelium (RPE). SRT makes it possible to selevtively effect the RPE, sparing the adjacent neural retina with the photoreceptors and also the choroid below the RPE. In the best case, the therapy leads to regeneration of the RPE and a long-term metabolic increase at the chorio-retinal junction. In contrast to conventional laser photocoagulation, which is associated with complete thermal necrosis of and around the treated site, absolutely no scotoma occurs in SRT. This paper reviews the methods and mechanisms behind the selective effects of the RPE. In vitro and preclinical results are used to describe the bandwidth of selective effects with respect to different irradiation settings. An optoacoustic technique is introduced to visualize effects that cannot be seen by ophthalmoscopy and to facilitate dosimetry control without recourse to angiography completes the report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12

Literatur

  1. Bresnick G (1983) Diabetic maculopathy: A critical review highlighting diffuse macular edema. Ophthalmology 90: 1301–1317

    PubMed  Google Scholar 

  2. Figueroa M, Regueras A, Bertrand J et al. (1997) Laser photocoagulation for macular soft drusen. Retina 17: 378–384

    PubMed  Google Scholar 

  3. Gabel VP (1974) Die Lichtabsorption am Augenhintergrund. Habilitation an der Ludwig-Maximilians-Universität München

  4. Schrärmeyer U, Heimann K (1999) Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12: 219–236

    Article  PubMed  Google Scholar 

  5. Ramrattan RS, van der Schaft T, Mooy C et al. (1994) Morphometric analysis of Bruch‚s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35: 2857–2864

    PubMed  Google Scholar 

  6. Moore DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch‚s membrane. Invest Ophthalmol Vis Sci 36: 1290–1297

    PubMed  Google Scholar 

  7. Roider J, Michaud NA, Flotte TJ et al. (1992) Response of the Retinal Pigment Epithelium to Selective Photocoagulation. Arch Ophthalmol 110: 1786–1792

    PubMed  Google Scholar 

  8. Roider J, Hillenkamp F, Flotte TJ et al. (1993) Microphotocoagulation: Selective effects of repetitive short laser pulses. Proc Natl Acad Sci 90: 8643–8647

    Article  PubMed  Google Scholar 

  9. Anderson RR, Parrish JA (1983) Selective Photothermolysis: Precise Microsurgery by Selective Absorption of Pulsed Laser Radiation. Science 220: 524–527

    PubMed  Google Scholar 

  10. Ross EV (2001) Extended Theory of Selective Photothermolysis: A New Recipe for Hair Cooking? Lasers Surg Med 29: 413–415

    Article  PubMed  Google Scholar 

  11. Parrish JA, Anderson RR, Harrist T e al. (1983) Selective Thermal Effects with Pulsed Irradiation from Lasers: From Organ to Organelle. J Invest Dermatol 80: 75–80

    Article  Google Scholar 

  12. Goldman L, Rockwell J, Meyer R et al. (1967) Laser Treatment of Tattoos: A Preliminary Survey of Three Years‘ Clinical Experience. JAMA 201: 841–844

    Article  PubMed  Google Scholar 

  13. Dover JS, Arndt KA (2000) New Approaches to the Treatment of Vascular Lesions. Lasers Surg Med 26: 158–163

    Article  PubMed  Google Scholar 

  14. Glickman RD, Jacques SL, Hall RT et al. (2001) Revisiting the Internal Absorption Coe-cient of the Retinal Pigment Epithelium Melanosome. Proc SPIE 4257: 134–141

    Article  Google Scholar 

  15. Brinkmann R, Hüttmann G, Rögener J et al. (2000) Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen. Lasers Surg Med 27: 451–464

    Article  PubMed  Google Scholar 

  16. Neumann J, Brinkmann R (2005) Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses. J Biomed Optics 10: 024001

    Article  Google Scholar 

  17. Birngruber R, Hillenkamp F, Gabel VP (1983) Experimental studies of laser thermal retinal injury. Health Phys 44: 519–531

    PubMed  Google Scholar 

  18. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford at the Clarendon Press, 2nd edition

  19. Hüttmann G (2002) Mechanismen der selektiven Schädigung des RPE: Modellrechnungen. Forschungs- und Entwicklungsbericht, Medizinisches Laserzentrum Lübeck, S 19–20

  20. Gabel VP, Birngruber R, Hillenkamp F (1978) Visible and near infrared light absorption in pigment epithelium and choroid. Congress Series: XXIII Concilium Ophthalmologicum 450: 658–662

  21. Birngruber R, Hillenkamp F, Gabel VP (1985) Theoretical investigations of laser thermal retinal injury. Health Phys 48: 781–796

    PubMed  Google Scholar 

  22. Vassiliadis A, Zweng HC, Peppers NA et al. (1970) Thresholds of laser eye hazards. Arch Environ Health 20: 161–170

    PubMed  Google Scholar 

  23. Roider J, El-Hifnawi ES, Birngruber R (1998) Bubble Formation as Primary Interaction Mechanism in Retinal Laser Exposure With 200-ns Laser Pulses. Las Surg Med 22: 240–248

    Article  Google Scholar 

  24. Neumann J, Brinkmann R (2005) Nucleation and dynamics of bubbles forming around laser heated microabsorbers. Proc SPIE 5863: 19–27

    Google Scholar 

  25. Schüle G, Rumohr M, Hüttmann G et al. (2005) RPE damage thresholds and mechanisms for laser exposure in the µs to ms time regimen. Inv Ophthalmol Vis Sci 46: 714–719

    Article  Google Scholar 

  26. Needham D, Nunn RS (1990) Elastic deformation and failure of liquid bilayer membranes containing cholesterol. Biophysical J 58: 997–1009

    Google Scholar 

  27. Neumann J, Brinkmann R (2003) Microbubble dynamics around laser heated microparticles. Proc SPIE 5142: 82–87

    Article  Google Scholar 

  28. Neumann J (2005) Mikroskopische Untersuchungen zur laser-induzierten Blasenbildung und -dynamik an absorbierenden Mikropartikeln. Dissertation, Universität zu Lübeck

  29. Neumann J, Brinkmann R (2006) Cell disintegration by laser induced transient microbubbles and its simultaneous monitoring by interferometry. J Biomed Opt 11: 039604, 1–11

    Article  Google Scholar 

  30. Framme C, Schüle G, Roider J et al. (2002) Threshold determinations for selective RPE damage with repetitive pulsed microsecond laser systems in rabbits. Ophthalmic Surg Las 33: 400–409

    Google Scholar 

  31. Finney DJ (1971) Probit Analysis, 3. edition. Cambridge University Press

  32. Framme C, Schüle G, Roider J et al. (2004) Influence of pulse duration and pulse number in selective RPE laser treatment. Las Surg Med 34: 206–215

    Article  Google Scholar 

  33. Schüle G, Hüttmann G, Framme C J et al. (2004) Non-invasive optoacoustic temperature determination at the fundus of the eye during laser irradiation. J Biomedical Optics 9: 173–179

    Article  Google Scholar 

  34. Kracht D, Brinkmann R (2004) Green Q-switched microsecond laser pulses by overcoupled intracavity second harmonic generation. Optics communication 231: 319–324

    Article  Google Scholar 

  35. Feeney L, Grieshaber JH, Hogan MJ (1965) Studies on human ocular pigment. Eye Structure, II. Supp. Ed. (Ed. Rohen). Schattauer

  36. Roider J, Brinkmann R, Birngruber R (2003) Selective retinal pigment epithelium laser treatment—Theoretical and clinical aspects. In: Fankhauser F, Kwasniewska S (eds) Lasers in Ophthalmology – Basic, Diagnostic and surgical Aspects. Kugler Publications, The Hague, pp 119–129

  37. Roider J, Brinkmann R, Wirbelauer C et al. (1999) Retinal sparing by selective retinal pigment epithelial photocoagulation. Arch Ophthalmol 117: 1028–1034

    PubMed  Google Scholar 

  38. Roider J, Brinkmann R, Wirbelauer C et al. (2000) Subthreshold (retinal pigment epithelium) photocoagulation in macular diseases: a pilot study. Br J Ophthalmol 84: 40–47

    Article  PubMed  Google Scholar 

  39. Elsner H, Pörksen E, Klatt C et al. (2006) Selective Retina Therapy (SRT) in patients with central serous chorioretinopathy (CSC). Graefes Arch Ophthalmol (in print), on-line: DOI 10.1007/s00417–006–0368–5

  40. Elsner H, Liew SHM, Klatt C et al. (2006) Selektive Retina Therapie (SRT) bei Patienten mit diabetischer Makulopathie. Ophthalmologe 103

  41. Schüle G (2002) Mechanismen und On-line Dosimetrie bei selektiver RPE Therapie. Dissertation, Universität zu Lübeck

  42. Roegener J, Brinkmann R, Lin CP (2004) Pump-probe detection of laser-induced microbubble formation in retinal pigment epithelium cells. Biomedical Optics 9: 367–371

    Article  PubMed  Google Scholar 

  43. Schüle G, Elsner H, Framme C et al. (2005) Optoacoustic real-time dosimetry for selective retina treatment. J Biomed Opt 10: 064022,1–11

    Article  PubMed  Google Scholar 

  44. Kandulla J, Elsner H, Birngruber R et al. (2006) Non-Invasive Optoacoustic Online Retinal Temperature Determination During CW-Laser Irradiation. J Biomed Optics 11: 010604, 1–13

    Google Scholar 

  45. Alt C, Framme C, Schnell S et al. (2005) Selective targeting of the retinal pigment epithelium using an acousto-optic laser scanner. J Biomed Opt 10: 64014

    Article  Google Scholar 

  46. Brinkmann R, Koop N, Özdemir M et al. (2003) Targeting the Retinal Pigment Epithelium (RPE) by Means of a Rapidly Scanned Continuous Wave (CW) Laser Beam. Las Surg Med 32: 252–264

    Article  Google Scholar 

  47. Klatt C, Elsner H, Pörksen E et al. (2006) Selektive Retina-Therapie (SRT) bei Retinopathia centralis serosa (RCS) mit Pigmentepithel-abhebung (PED). Ophthalmologe 103

  48. Liew M et al. (2006) Multicenterstudy for Selective Retina Treatment (SRT) (in preparation)

Download references

Danksagung

Die Autoren danken dem Bundesministerium für Bildung und Forschung (BMBF) für die Förderung des Projekts (FKz: 13N7309 und 01EZ0408), dem Studiensponsor Lumenis Inc. sowie Christian Wacker.

Interessenkonflikt

Der korrespondierende Autor weist auf eine Verbindungen mit folgender Firma hin: Lumenis – Sponsor der Multicenterstudie. Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brinkmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkmann, R., Schüle, G., Neumann, J. et al. Selektive Retinatherapie. Ophthalmologe 103, 839–849 (2006). https://doi.org/10.1007/s00347-006-1416-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-006-1416-6

Schlüsselwörter

Keywords

Navigation