Skip to main content
Erschienen in: Der Ophthalmologe 6/2019

22.02.2019 | Glaukom | Leitthema

Epidemiologie und Anatomie der Myopie

verfasst von: Prof. Dr. Jost B. Jonas, Songhomitra Panda-Jonas

Erschienen in: Die Ophthalmologie | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Die Myopie nimmt weltweit, insbesondere in Ost- und Südostasien, in ihrer Häufigkeit zu.

Ziel der Arbeit

Das Ziel der Arbeit ist die Darstellung der Epidemiologie der Myopie und der Myopie-assoziierten morphologischen Veränderungen.

Material und Methoden

Die Ergebnisse von epidemiologischen, klinischen und histologischen Studien werden zusammenfassend beschrieben.

Ergebnisse

In den letzten 3 Dekaden hat die Prävalenz der Myopie ausgeprägt zugenommen, sodass zurzeit ca. 80–90 % der 18-Jährigen in Ostasien myop und 10–20 % hoch myop sind. Man schätzt, dass im Jahr 2050 die Häufigkeit der Myopie auf 50 % und die der hohen Myopie auf ca. 10 % weltweit ansteigen wird und dass die hohe Myopie wegen der damit verbundenen myopischen Makulopathie und glaukomatösen Optikusatrophie zur häufigsten Ursache für irreversible Erblindung werden kann. Morphologisch ist die Myopie gekennzeichnet durch eine vornehmlich sagittale und zu geringem Anteil koronare Bulbusvergrößerung, Verdünnung der Netzhaut und retinalen Pigmentepithelzelldichte im Äquatorbereich, Verdünnung der Choroidea und Sklera vornehmlich am hinteren Pol, unveränderte Dicke der Bruch-Membran insgesamt und der Retina im Makulagebiet, unveränderte Dichte der retinalen Pigmentepithelzelldichte im Makulabereich, vergrößerte Papillen-Fovea-Entfernung durch die sich bildenden parapapillären Gamma- und Deltazonen und vertikale Rotation und Vergrößerung der Papille mit Verlängerung und Verdünnung der Lamina cribrosa und des peripapillären Skleralstegs.

Diskussion

Diese morphologischen Veränderungen lassen sich möglicherweise durch eine Neubildung und Verlängerung der Bruch-Membran im Äquatorbereich als Ursache für die sagittale Bulbusverlängerung erklären.
Literatur
1.
Zurück zum Zitat Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234PubMed Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234PubMed
2.
Zurück zum Zitat Holden BA, Fricke TR, Wilson DA et al (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123:1036–1042PubMed Holden BA, Fricke TR, Wilson DA et al (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123:1036–1042PubMed
3.
Zurück zum Zitat Wu JF, Bi HS, Wang SM (2013) Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study. PLoS ONE 8:e82763PubMedPubMedCentral Wu JF, Bi HS, Wang SM (2013) Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study. PLoS ONE 8:e82763PubMedPubMedCentral
4.
Zurück zum Zitat You QS, Wu LJ, Duan JL et al (2014) Prevalence of myopia in school children in greater Beijing: the Beijing Childhood Eye Study. Acta Ophthalmol 92:e398–e406PubMed You QS, Wu LJ, Duan JL et al (2014) Prevalence of myopia in school children in greater Beijing: the Beijing Childhood Eye Study. Acta Ophthalmol 92:e398–e406PubMed
5.
Zurück zum Zitat Guo K, Yang DY, Wang Y et al (2015) Prevalence of myopia in school children in Ejina. The Gobi Desert Children Eye Study. Invest Ophthalmol Vis Sci 56:1769–1774PubMed Guo K, Yang DY, Wang Y et al (2015) Prevalence of myopia in school children in Ejina. The Gobi Desert Children Eye Study. Invest Ophthalmol Vis Sci 56:1769–1774PubMed
6.
Zurück zum Zitat Xu L, Wang Y, Wang S et al (2007) High myopia and glaucoma susceptibility. The Beijing Eye Study. Ophthalmology 114:216–220PubMed Xu L, Wang Y, Wang S et al (2007) High myopia and glaucoma susceptibility. The Beijing Eye Study. Ophthalmology 114:216–220PubMed
7.
Zurück zum Zitat Ohno-Matsui K, Kawasaki R, Jonas JB et al (2015) International classification and grading system for myopic maculopathy. Am J Ophthalmol 159:877–883PubMed Ohno-Matsui K, Kawasaki R, Jonas JB et al (2015) International classification and grading system for myopic maculopathy. Am J Ophthalmol 159:877–883PubMed
8.
Zurück zum Zitat Jonas JB, Weber P, Nagaoka N et al (2017) Glaucoma in high myopia and parapapillary delta zone. PLoS ONE 12:e175120PubMedPubMedCentral Jonas JB, Weber P, Nagaoka N et al (2017) Glaucoma in high myopia and parapapillary delta zone. PLoS ONE 12:e175120PubMedPubMedCentral
9.
Zurück zum Zitat Morgan IG, Ohno-Matsui K, Saw SM (2012) Myopia. Lancet 379:1739–1748PubMed Morgan IG, Ohno-Matsui K, Saw SM (2012) Myopia. Lancet 379:1739–1748PubMed
10.
Zurück zum Zitat Rose KA, Morgan IG, Ip J et al (2008) Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115:1279–1285PubMed Rose KA, Morgan IG, Ip J et al (2008) Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115:1279–1285PubMed
11.
Zurück zum Zitat You QS, Wu LJ, Duan JL et al (2012) Factors associated with myopia in school children in China. The Beijing Childhood Eye Study. PLoS ONE 7:e52668PubMedPubMedCentral You QS, Wu LJ, Duan JL et al (2012) Factors associated with myopia in school children in China. The Beijing Childhood Eye Study. PLoS ONE 7:e52668PubMedPubMedCentral
12.
Zurück zum Zitat Wang YX, Xu L, Jonas JB (2013) The effect of the Chinese cultural revolution and great leap forward on the prevalence of myopia. Eur J Epidemiol 28:1001–1004PubMed Wang YX, Xu L, Jonas JB (2013) The effect of the Chinese cultural revolution and great leap forward on the prevalence of myopia. Eur J Epidemiol 28:1001–1004PubMed
13.
Zurück zum Zitat He M, Xiang F, Zeng Y et al (2015) Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 314:1142–1148PubMed He M, Xiang F, Zeng Y et al (2015) Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 314:1142–1148PubMed
14.
Zurück zum Zitat McBrien NA, Cornell LM, Gentle A (2001) Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 42:2179–2187PubMed McBrien NA, Cornell LM, Gentle A (2001) Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 42:2179–2187PubMed
15.
Zurück zum Zitat Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res 35:1175–1194PubMed Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res 35:1175–1194PubMed
17.
Zurück zum Zitat Wei WB, Xu L, Jonas JB et al (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180PubMed Wei WB, Xu L, Jonas JB et al (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180PubMed
18.
Zurück zum Zitat Heine L (1899) Beiträge zur Anatomie des myopischen Auges. Arch Augenheilkd 38:277–290 Heine L (1899) Beiträge zur Anatomie des myopischen Auges. Arch Augenheilkd 38:277–290
19.
Zurück zum Zitat Vurgese S, Panda-Jonas S, Jonas JB (2012) Sclera thickness in human globes and its relations to age, axial length and glaucoma. PLoS ONE 7:e29692PubMedPubMedCentral Vurgese S, Panda-Jonas S, Jonas JB (2012) Sclera thickness in human globes and its relations to age, axial length and glaucoma. PLoS ONE 7:e29692PubMedPubMedCentral
20.
Zurück zum Zitat Jonas JB, Ohno-Matsui K, Jiang WJ et al (2017) Bruch membrane and the mechanism of myopization. A new theory. Retina 37:1428–1440PubMed Jonas JB, Ohno-Matsui K, Jiang WJ et al (2017) Bruch membrane and the mechanism of myopization. A new theory. Retina 37:1428–1440PubMed
21.
Zurück zum Zitat Jonas JB, Ohno-Matsui K, Holbach L et al (2017) Association between axial length and horizontal and vertical globe diameters. Graefes Arch Clin Exp Ophthalmol 255:237–242PubMed Jonas JB, Ohno-Matsui K, Holbach L et al (2017) Association between axial length and horizontal and vertical globe diameters. Graefes Arch Clin Exp Ophthalmol 255:237–242PubMed
22.
Zurück zum Zitat Jonas JB, Holbach L, Panda-Jonas S (2014) Scleral cross section area and volume and axial length. PLoS ONE 9:e93551PubMedPubMedCentral Jonas JB, Holbach L, Panda-Jonas S (2014) Scleral cross section area and volume and axial length. PLoS ONE 9:e93551PubMedPubMedCentral
23.
Zurück zum Zitat Shen L, Xu X, You QS et al (2015) Scleral thickness in Chinese eyes. Invest Ophthalmol Vis Sci 56:2720–2727PubMed Shen L, Xu X, You QS et al (2015) Scleral thickness in Chinese eyes. Invest Ophthalmol Vis Sci 56:2720–2727PubMed
24.
Zurück zum Zitat Shen L, You QS, Xu X et al (2016) Scleral and choroidal volume in relation to axial length in infants with retinoblastoma versus adults with malignant melanomas or end-stage glaucoma. Graefes Arch Clin Exp Ophthalmol 254:1779–1786PubMed Shen L, You QS, Xu X et al (2016) Scleral and choroidal volume in relation to axial length in infants with retinoblastoma versus adults with malignant melanomas or end-stage glaucoma. Graefes Arch Clin Exp Ophthalmol 254:1779–1786PubMed
25.
Zurück zum Zitat Jonas JB, Holbach L, Panda-Jonas S (2014) Bruch’s membrane thickness in high myopia. Acta Ophthalmol 92:e470–e474PubMed Jonas JB, Holbach L, Panda-Jonas S (2014) Bruch’s membrane thickness in high myopia. Acta Ophthalmol 92:e470–e474PubMed
26.
Zurück zum Zitat Bai HX, Mao Y, Shen L et al (2017) Bruch’s membrane thickness in relationship to axial length. PLoS ONE 12:e182080PubMedPubMedCentral Bai HX, Mao Y, Shen L et al (2017) Bruch’s membrane thickness in relationship to axial length. PLoS ONE 12:e182080PubMedPubMedCentral
27.
Zurück zum Zitat Jonas JB, Ohno-Matsui K, Holbach L et al (2017) Retinal pigment epithelium cell density in relationship to axial length in human eyes. Acta Ophthalmol 95:e22–e28PubMed Jonas JB, Ohno-Matsui K, Holbach L et al (2017) Retinal pigment epithelium cell density in relationship to axial length in human eyes. Acta Ophthalmol 95:e22–e28PubMed
28.
Zurück zum Zitat Jonas JB, Xu L, Wei WB et al (2016) Retinal thickness and axial length. The Beijing Eye Study 2011. Invest Ophthalmol Vis Sci 57:1791–1797PubMed Jonas JB, Xu L, Wei WB et al (2016) Retinal thickness and axial length. The Beijing Eye Study 2011. Invest Ophthalmol Vis Sci 57:1791–1797PubMed
29.
Zurück zum Zitat Jonas JB, Wang YX, Zhang Q et al (2015) Macular Bruch’s membrane length and axial length. The Beijing Eye Study. PLoS ONE 10:e136833PubMedPubMedCentral Jonas JB, Wang YX, Zhang Q et al (2015) Macular Bruch’s membrane length and axial length. The Beijing Eye Study. PLoS ONE 10:e136833PubMedPubMedCentral
30.
Zurück zum Zitat Shao L, Xu L, Wei WB et al (2014) Visual acuity and subfoveal choroidal thickness. The Beijing Eye Study. Am J Ophthalmol 158:702–709PubMed Shao L, Xu L, Wei WB et al (2014) Visual acuity and subfoveal choroidal thickness. The Beijing Eye Study. Am J Ophthalmol 158:702–709PubMed
31.
Zurück zum Zitat Jonas RA, Wang YX, Yang H et al (2015) Optic disc – fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011. PLoS ONE 10:e138701PubMedPubMedCentral Jonas RA, Wang YX, Yang H et al (2015) Optic disc – fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011. PLoS ONE 10:e138701PubMedPubMedCentral
33.
Zurück zum Zitat Jonas JB, Jonas SB, Jonas RA et al (2012) Parapapillary atrophy: histological gamma zone and delta zone. PLoS ONE 7:e47237PubMedPubMedCentral Jonas JB, Jonas SB, Jonas RA et al (2012) Parapapillary atrophy: histological gamma zone and delta zone. PLoS ONE 7:e47237PubMedPubMedCentral
34.
Zurück zum Zitat Dai Y, Jonas JB, Huang H et al (2013) Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci 54:2013–2018PubMed Dai Y, Jonas JB, Huang H et al (2013) Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci 54:2013–2018PubMed
35.
Zurück zum Zitat Jonas JB, Ohno-Matsui K, Spaide RF et al (2013) Macular Bruch’s membrane holes in high myopia: associated with gamma zone and delta zone of parapapillary region. Invest Ophthalmol Vis Sci 54:1295–1230PubMed Jonas JB, Ohno-Matsui K, Spaide RF et al (2013) Macular Bruch’s membrane holes in high myopia: associated with gamma zone and delta zone of parapapillary region. Invest Ophthalmol Vis Sci 54:1295–1230PubMed
36.
Zurück zum Zitat Jonas JB, Wang YX, Zhang Q et al (2016) Parapapillary gamma zone and axial elongation-associated optic disc rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci 57:396–402PubMed Jonas JB, Wang YX, Zhang Q et al (2016) Parapapillary gamma zone and axial elongation-associated optic disc rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci 57:396–402PubMed
37.
38.
Zurück zum Zitat Smith EL 3rd, Hung LF, Huang J et al (2010) Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci 51:3864–3873PubMedPubMedCentral Smith EL 3rd, Hung LF, Huang J et al (2010) Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci 51:3864–3873PubMedPubMedCentral
39.
Zurück zum Zitat Berntsen DA, Barr CD, Mutti DO et al (2013) Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses. Invest Ophthalmol Vis Sci 54:5761–5770PubMedPubMedCentral Berntsen DA, Barr CD, Mutti DO et al (2013) Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses. Invest Ophthalmol Vis Sci 54:5761–5770PubMedPubMedCentral
40.
Zurück zum Zitat Hasebe S, Jun J, Varnas SR (2014) Myopia control with positively aspherized progressive addition lenses: a 2-year, multicenter, randomized, controlled trial. Invest Ophthalmol Vis Sci 55:7177–7788PubMed Hasebe S, Jun J, Varnas SR (2014) Myopia control with positively aspherized progressive addition lenses: a 2-year, multicenter, randomized, controlled trial. Invest Ophthalmol Vis Sci 55:7177–7788PubMed
41.
Zurück zum Zitat Benavente-Pérez A, Nour A, Troilo D (2014) Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci 55:6765–6773PubMedPubMedCentral Benavente-Pérez A, Nour A, Troilo D (2014) Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci 55:6765–6773PubMedPubMedCentral
42.
Zurück zum Zitat Harder BC, von Baltz S, Schlichtenbrede FC et al (2013) Intravitreal bevacizumab for retinopathy of prematurity: refractive error results. Am J Ophthalmol 155:1119–1124.e1PubMed Harder BC, von Baltz S, Schlichtenbrede FC et al (2013) Intravitreal bevacizumab for retinopathy of prematurity: refractive error results. Am J Ophthalmol 155:1119–1124.e1PubMed
43.
Zurück zum Zitat Lee YS, See LC, Chang SH et al (2018) Macular structures, optical components, and visual acuity in preschool children after intravitreal bevacizumab or laser treatment. Am J Ophthalmol 192:20–30PubMed Lee YS, See LC, Chang SH et al (2018) Macular structures, optical components, and visual acuity in preschool children after intravitreal bevacizumab or laser treatment. Am J Ophthalmol 192:20–30PubMed
44.
Zurück zum Zitat van Soest SS, de Wit GM, Essing AH et al (2007) Comparison of human retinal pigment epithelium gene expression in macula and periphery highlights potential topographic differences in Bruch’s membrane. Mol Vis 13:1608–1617PubMed van Soest SS, de Wit GM, Essing AH et al (2007) Comparison of human retinal pigment epithelium gene expression in macula and periphery highlights potential topographic differences in Bruch’s membrane. Mol Vis 13:1608–1617PubMed
45.
Zurück zum Zitat Jiang WJ, Song HX, Li SY et al (2017) Amphiregulin antibody and reduction of axial elongation in experimental myopia. EBioMedicine 17:134–144PubMedPubMedCentral Jiang WJ, Song HX, Li SY et al (2017) Amphiregulin antibody and reduction of axial elongation in experimental myopia. EBioMedicine 17:134–144PubMedPubMedCentral
46.
Zurück zum Zitat Wang X, Teoh CKG, Chan ASY et al (2018) Biomechanical properties of Bruch’s membrane-choroid complex and their influence on optic nerve head biomechanics. Invest Ophthalmol Vis Sci 59:2808PubMed Wang X, Teoh CKG, Chan ASY et al (2018) Biomechanical properties of Bruch’s membrane-choroid complex and their influence on optic nerve head biomechanics. Invest Ophthalmol Vis Sci 59:2808PubMed
47.
Zurück zum Zitat Jonas JB, Wang YX, Zhang Q et al (2015) Macular Bruch’s membrane length and axial length. The Beijing Eye Study. PLoS ONE 10:e136833PubMedPubMedCentral Jonas JB, Wang YX, Zhang Q et al (2015) Macular Bruch’s membrane length and axial length. The Beijing Eye Study. PLoS ONE 10:e136833PubMedPubMedCentral
48.
Zurück zum Zitat Jonas JB, Ohno-Matsui K, Spaide RF et al (2013) Macular Bruch’s membrane defects and axial length: association with gamma zone and delta zone in peripapillary region. Invest Ophthalmol Vis Sci 54:1295–1302PubMed Jonas JB, Ohno-Matsui K, Spaide RF et al (2013) Macular Bruch’s membrane defects and axial length: association with gamma zone and delta zone in peripapillary region. Invest Ophthalmol Vis Sci 54:1295–1302PubMed
49.
Zurück zum Zitat Ohno-Matsui K, Jonas JB, Spaide RF (2016) Macular Bruch’s membrane holes in highly myopic patchy chorioretinal atrophy. Am J Ophthalmol 166:22–28PubMed Ohno-Matsui K, Jonas JB, Spaide RF (2016) Macular Bruch’s membrane holes in highly myopic patchy chorioretinal atrophy. Am J Ophthalmol 166:22–28PubMed
50.
Zurück zum Zitat Jonas JB, Ohno-Matsui K, Panda-Jonas S (2017) Optic nerve head histopathology in high axial myopia. J Glaucoma 26:187–193PubMed Jonas JB, Ohno-Matsui K, Panda-Jonas S (2017) Optic nerve head histopathology in high axial myopia. J Glaucoma 26:187–193PubMed
51.
Zurück zum Zitat Jonas JB, Wang YX, Zhang Q et al (2016) Parapapillary gamma zone and axial elongation-associated optic disc rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci 57:396–402PubMed Jonas JB, Wang YX, Zhang Q et al (2016) Parapapillary gamma zone and axial elongation-associated optic disc rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci 57:396–402PubMed
52.
Zurück zum Zitat Fan YY, Jonas JB, Wang YX et al (2017) Horizontal and vertical optic disc rotation. The Beijing Eye Study. PLoS ONE 12:e175749PubMedPubMedCentral Fan YY, Jonas JB, Wang YX et al (2017) Horizontal and vertical optic disc rotation. The Beijing Eye Study. PLoS ONE 12:e175749PubMedPubMedCentral
53.
Zurück zum Zitat Dai Y, Jonas JB, Ling Z et al (2015) Ophthalmoscopic-perspectively distorted optic disc diameters and real disc diameters. Invest Ophthalmol Vis Sci 56:7076–7083PubMed Dai Y, Jonas JB, Ling Z et al (2015) Ophthalmoscopic-perspectively distorted optic disc diameters and real disc diameters. Invest Ophthalmol Vis Sci 56:7076–7083PubMed
54.
Zurück zum Zitat Jonas JB, Jonas SB, Jonas RA et al (2011) Histology of the parapapillary region in high myopia. Am J Ophthalmol 152:1021–1029PubMed Jonas JB, Jonas SB, Jonas RA et al (2011) Histology of the parapapillary region in high myopia. Am J Ophthalmol 152:1021–1029PubMed
55.
Zurück zum Zitat Reis AS, Sharpe GP, Yang H et al (2012) Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 119:738–747PubMedPubMedCentral Reis AS, Sharpe GP, Yang H et al (2012) Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 119:738–747PubMedPubMedCentral
56.
Zurück zum Zitat Demer JL (2016) Optic nerve sheath as a novel mechanical load on the globe in ocular ductionoptic nerve sheath constrains duction. Invest Ophthalmol Vis Sci 57:1826–1838PubMedPubMedCentral Demer JL (2016) Optic nerve sheath as a novel mechanical load on the globe in ocular ductionoptic nerve sheath constrains duction. Invest Ophthalmol Vis Sci 57:1826–1838PubMedPubMedCentral
57.
Zurück zum Zitat Wang X, Rumpel H, Lim WE et al (2016) Finite element analysis predicts large optic nerve head strains during horizontal eye movements. Invest Ophthalmol Vis Sci 57:2452–2462PubMed Wang X, Rumpel H, Lim WE et al (2016) Finite element analysis predicts large optic nerve head strains during horizontal eye movements. Invest Ophthalmol Vis Sci 57:2452–2462PubMed
58.
Zurück zum Zitat Spaide RF, Akiba M, Ohno-Matsui K (2012) Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography. Retina 32:1037–1044PubMed Spaide RF, Akiba M, Ohno-Matsui K (2012) Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography. Retina 32:1037–1044PubMed
59.
Zurück zum Zitat Ohno-Matsui K, Shimada N, Akiba M et al (2013) Characteristics of intrachoroidal cavitation located temporal to optic disc in highly myopic eyes. Eye (Lond) 27:630–638 Ohno-Matsui K, Shimada N, Akiba M et al (2013) Characteristics of intrachoroidal cavitation located temporal to optic disc in highly myopic eyes. Eye (Lond) 27:630–638
60.
Zurück zum Zitat Dai Y, Jonas JB, Ling Z et al (2015) Unilateral peripapillary intrachoroidal cavitation and optic disc rotation. Retina 35:655–659PubMed Dai Y, Jonas JB, Ling Z et al (2015) Unilateral peripapillary intrachoroidal cavitation and optic disc rotation. Retina 35:655–659PubMed
61.
Zurück zum Zitat Jonas JB, Gusek GC, Naumann GO (1988) Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol 226:587–590PubMed Jonas JB, Gusek GC, Naumann GO (1988) Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol 226:587–590PubMed
62.
Zurück zum Zitat Dichtl A, Jonas JB, Naumann GO (1998) Histomorphometry of the optic disc in highly myopic eyes with absolute secondary angle closure glaucoma. Br J Ophthalmol 82:286–289PubMedPubMedCentral Dichtl A, Jonas JB, Naumann GO (1998) Histomorphometry of the optic disc in highly myopic eyes with absolute secondary angle closure glaucoma. Br J Ophthalmol 82:286–289PubMedPubMedCentral
63.
Zurück zum Zitat Xu L, Li Y, Wang S et al (2007) Characteristics of highly myopic eyes. The Beijing Eye Study. Ophthalmology 114:121–126PubMed Xu L, Li Y, Wang S et al (2007) Characteristics of highly myopic eyes. The Beijing Eye Study. Ophthalmology 114:121–126PubMed
64.
Zurück zum Zitat Jonas JB (2005) Optic disc size correlated with refractive error. Am J Ophthalmol 139:346–348PubMed Jonas JB (2005) Optic disc size correlated with refractive error. Am J Ophthalmol 139:346–348PubMed
65.
Zurück zum Zitat Jonas JB, Fang Y, Weber P et al (2018) Parapapillary gamma zone and delta zone in high myopia. Retina 38:931–938PubMed Jonas JB, Fang Y, Weber P et al (2018) Parapapillary gamma zone and delta zone in high myopia. Retina 38:931–938PubMed
66.
Zurück zum Zitat Jonas JB, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45:2660–2665PubMed Jonas JB, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45:2660–2665PubMed
67.
Zurück zum Zitat Jonas JB, Berenshtein E, Holbach L (2003) Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci 44:5189–5195PubMed Jonas JB, Berenshtein E, Holbach L (2003) Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci 44:5189–5195PubMed
68.
Zurück zum Zitat Ren R, Jonas JB, Tian G et al (2010) Cerebrospinal fluid pressure in glaucoma. A prospective study. Ophthalmology 117:259–266PubMed Ren R, Jonas JB, Tian G et al (2010) Cerebrospinal fluid pressure in glaucoma. A prospective study. Ophthalmology 117:259–266PubMed
69.
Zurück zum Zitat Jonas JB, Jonas SB (2010) Histomorphometry of the circular arterial ring of Zinn-Haller in normal and glaucomatous eyes. Acta Ophthalmol 88:e317–e322PubMed Jonas JB, Jonas SB (2010) Histomorphometry of the circular arterial ring of Zinn-Haller in normal and glaucomatous eyes. Acta Ophthalmol 88:e317–e322PubMed
70.
Zurück zum Zitat Jonas JB, Holbach L, Panda-Jonas S (2013) Peripapillary arterial circle of Zinn-Haller: location and spatial relationships. PLoS ONE 8:e78867PubMedPubMedCentral Jonas JB, Holbach L, Panda-Jonas S (2013) Peripapillary arterial circle of Zinn-Haller: location and spatial relationships. PLoS ONE 8:e78867PubMedPubMedCentral
71.
Zurück zum Zitat Suh MH, Zangwill LM, Manalastas PIC et al (2018) Deep-layer microvasculature dropout by optical coherence tomography angiography and microstructure of parapapillary atrophy. Invest Ophthalmol Vis Sci 59:1995–2004PubMedPubMedCentral Suh MH, Zangwill LM, Manalastas PIC et al (2018) Deep-layer microvasculature dropout by optical coherence tomography angiography and microstructure of parapapillary atrophy. Invest Ophthalmol Vis Sci 59:1995–2004PubMedPubMedCentral
72.
Zurück zum Zitat Yan YN, Wang YX, Xu L et al (2015) Fundus tessellation: prevalence and associated factors. The Beijing eye study 2011. Ophthalmology 122:1873–1880PubMed Yan YN, Wang YX, Xu L et al (2015) Fundus tessellation: prevalence and associated factors. The Beijing eye study 2011. Ophthalmology 122:1873–1880PubMed
73.
Zurück zum Zitat Ohno-Matsui K, Tokoro T (1996) The progression of lacquer cracks in pathologic myopia. Retina 16:29–37PubMed Ohno-Matsui K, Tokoro T (1996) The progression of lacquer cracks in pathologic myopia. Retina 16:29–37PubMed
74.
Zurück zum Zitat Ohno-Matsui K, Ito M, Tokoro T (1996) Subretinal bleeding without choroidal neovascularization in pathologic myopia. A sign of new lacquer crack formation. Retina 16:196–202PubMed Ohno-Matsui K, Ito M, Tokoro T (1996) Subretinal bleeding without choroidal neovascularization in pathologic myopia. A sign of new lacquer crack formation. Retina 16:196–202PubMed
75.
Zurück zum Zitat Spaide RF, Jonas JB (2015) Peripapillary atrophy with large dehiscences in Bruch membrane in pseudoxanthoma elasticum. Retina 35:1507–1510PubMed Spaide RF, Jonas JB (2015) Peripapillary atrophy with large dehiscences in Bruch membrane in pseudoxanthoma elasticum. Retina 35:1507–1510PubMed
76.
Zurück zum Zitat Ohno-Matsui K, Jonas JB, Spaide RF (2015) Macular Bruch’s membrane holes in choroidal neovascularization-related myopic macular atrophy by swept-source optical coherence tomography. Am J Ophthalmol 162:133–139PubMed Ohno-Matsui K, Jonas JB, Spaide RF (2015) Macular Bruch’s membrane holes in choroidal neovascularization-related myopic macular atrophy by swept-source optical coherence tomography. Am J Ophthalmol 162:133–139PubMed
77.
Zurück zum Zitat You QS, Peng XY, Xu L et al (2016) Macular Bruch’s membrane defects in highly myopic eyes. The Beijing Eye Study. Retina 36:517–523PubMed You QS, Peng XY, Xu L et al (2016) Macular Bruch’s membrane defects in highly myopic eyes. The Beijing Eye Study. Retina 36:517–523PubMed
78.
Zurück zum Zitat Yan YN, Wang YX, Yang Y et al (2018) Ten-year progression of myopic maculopathy: The Beijing Eye Study 2001–2011. Ophthalmology 125:1253–1263PubMed Yan YN, Wang YX, Yang Y et al (2018) Ten-year progression of myopic maculopathy: The Beijing Eye Study 2001–2011. Ophthalmology 125:1253–1263PubMed
79.
Zurück zum Zitat Fang Y, Yokoi T, Nagaoka N et al (2018) Progression of myopic maculopathy during 18-year follow-up. Ophthalmology 125:863–877PubMed Fang Y, Yokoi T, Nagaoka N et al (2018) Progression of myopic maculopathy during 18-year follow-up. Ophthalmology 125:863–877PubMed
81.
Zurück zum Zitat Gaucher D, Erginay A, Lecleire-Collet A et al (2008) Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol 145:909–914PubMed Gaucher D, Erginay A, Lecleire-Collet A et al (2008) Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol 145:909–914PubMed
82.
Zurück zum Zitat Fang Y, Jonas JB, Yokoi T et al (2017) Macular Bruch’s membrane defect and dome-shaped macula in high myopia. PLoS ONE 12:e178998PubMedPubMedCentral Fang Y, Jonas JB, Yokoi T et al (2017) Macular Bruch’s membrane defect and dome-shaped macula in high myopia. PLoS ONE 12:e178998PubMedPubMedCentral
83.
Zurück zum Zitat Shinohara K, Tanaka N, Jonas JB et al (2018) Ultrawide-field OCT to investigate relationships between myopic macular retinoschisis and posterior staphyloma. Ophthalmology 125:1575–1586PubMed Shinohara K, Tanaka N, Jonas JB et al (2018) Ultrawide-field OCT to investigate relationships between myopic macular retinoschisis and posterior staphyloma. Ophthalmology 125:1575–1586PubMed
Metadaten
Titel
Epidemiologie und Anatomie der Myopie
verfasst von
Prof. Dr. Jost B. Jonas
Songhomitra Panda-Jonas
Publikationsdatum
22.02.2019
Verlag
Springer Medizin
Schlagwort
Glaukom
Erschienen in
Die Ophthalmologie / Ausgabe 6/2019
Print ISSN: 2731-720X
Elektronische ISSN: 2731-7218
DOI
https://doi.org/10.1007/s00347-019-0858-6

Weitere Artikel der Ausgabe 6/2019

Der Ophthalmologe 6/2019 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.