Skip to main content
Log in

Spatial contrast sensitivity of birds

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Contrast sensitivity (CS) is the ability of the observer to discriminate between adjacent stimuli on the basis of their differences in relative luminosity (contrast) rather than their absolute luminances. In previous studies, using a narrow range of species, birds have been reported to have low contrast detection thresholds relative to mammals and fishes. This was an unexpected finding because birds had been traditionally reported to have excellent visual acuity and color vision. This study reports CS in six species of birds that represent a range of visual adaptations to varying environments. The species studied were American kestrels (Falco sparverius), barn owls (Tyto alba), Japanese quail (Coturnix coturnix japonica), white Carneaux pigeons (Columba livia), starlings (Sturnus vulgaris), and red-bellied woodpeckers (Melanerpes carolinus). Contrast sensitivity functions (CSFs) were obtained from these birds using the pattern electroretinogram and compared with CSFs from the literature when possible. All of these species exhibited low CS relative to humans and most mammals, which suggests that low CS is a general characteristic of birds. Their low maximum CS may represent a trade-off of contrast detection for some other ecologically vital capacity such as UV detection or other aspects of their unique color vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Because of the slow rate of absorption through the cornea, and because excess amounts will enter the body through the oral-nasal cavity, the solution was administered at a rate of 1 drop per 30 s, over a period of 30 mins. The size of the drops was adjusted for the size of the animal, thus different species received differing volumes of vecuronium bromide. Previous refractive measures from this laboratory showed that the time course and frequency of administration of the drops were more effective for attaining cycloplegia than total volumes of administration.

  2. Individual cone mechanisms were isolated by bleaching or chromatic adaptation of other cone types with visual stimuli.

Abbreviations

c :

Cycle

CRF(s) :

Contrast–response function(s)

CRT :

Cathode-ray tube

CS :

Contrast sensitivity

CSF(s) :

Contrast sensitivity function(s)

D :

Diopter

deg :

Degree

Hz :

Hertz

IACUC :

Institutional animal care and use committee

MTF(s) :

Modulation transfer function(s)

PERG(s) :

Pattern electroretinogram(s)

SF :

Spatial frequency

UV :

Ultraviolet

References

  • Able KP, Able MA (1993) Daytime calibration of magnetic orientation in a migratory bird requires a view of skylight polarization. Nature 364:523–525

    Article  Google Scholar 

  • Aiken BE, Loop MS (1990) Visual reaction time of cats to different spatial frequencies. Vis Neurosci 5:557–564

    PubMed  CAS  Google Scholar 

  • Bagnoli P, Porciatti V, Francesconi W, Barsellotti R (1984) Pigeon pattern electroretinogram: a response unaffected by chronic section of the optic nerve. Exp Brain Res 55:253–262

    Article  PubMed  CAS  Google Scholar 

  • Bennett ATD, Cuthill IC (1994) Ultraviolet vision in birds: what is its function? Vision Res 34:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Bennett ATD, Cuthill IC, Partridge JC, Lunau K (1997) Ultraviolet plumage colors predict mate preferences in starlings. Proc Natl Acad Sci USA 94:8618–8621

    Article  PubMed  CAS  Google Scholar 

  • Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79:539–546

    Article  PubMed  CAS  Google Scholar 

  • Bilotta J, Powers MK (1991) Spatial contrast sensitivity of goldfish: mean luminance, temporal frequency and a new psychophysical technique. Vision Res 31:577–585

    Article  PubMed  CAS  Google Scholar 

  • Bisti S, Maffei L (1974) Behavioral contrast sensitivity of the cat in various visual meridians. J Physiol 241:201–210

    PubMed  CAS  Google Scholar 

  • Blake R, Camisa JM (1977) Temporal aspects of spatial vision in the cat. Exp Brain Res 28:325–333

    Article  PubMed  CAS  Google Scholar 

  • Blake R, Cool SJ, Crawford MLJ (1974) Visual resolution in the cat. Vision Res 14:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Blondeau P, Lamarche J, Lafond G, Brunette JR (1987) Pattern electroretinogram and optic nerve section in pigeons. Curr Eye Res 6:747–756

    Article  PubMed  CAS  Google Scholar 

  • Blough PM (1971) The visual acuity of the pigeon for distant targets. J Exp Anal Behav 15:57–68

    Article  PubMed  CAS  Google Scholar 

  • Bonds AB, Casagrande VA, Norton TT, DeBruyn EJ (1987) Visual resolution and sensitivity in a nocturnal primate (Galago) measured with visual evoked potentials. Vision Res 27:845–857

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK (1977) Visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Res 17:1112–1138

    Google Scholar 

  • Bowmaker JK, Martin GR (1985) Visual pigments and oil droplets in the penguin, Spheniscus humboldti. J Comp Physiol 156:71–77

    Article  CAS  Google Scholar 

  • Bowmaker JK, Kovach JK, Whitmore AV, Loew ER (1993) Visual pigments and oil droplets in genetically manipulated and carotenoid deprived quail: a microspectrophotometric study. Vision Res 33:571–578

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt D (1982) Birds, berries and UV. Naturwissenschaften 69:153–157

    Article  PubMed  CAS  Google Scholar 

  • Campbell FW, Green DG (1965) Optical and retinal factors affecting visual resolution. J Physiol 181:576–593

    PubMed  CAS  Google Scholar 

  • Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197:551–566

    PubMed  CAS  Google Scholar 

  • Celenza MA (1994) Spatial vision in the bluegill sunfish: optical, retinal and retinotectal determinants. Ph.D. dissertation, University of Delaware, Newark

  • Chen D-M, Goldsmith TH (1986) Four spectral classes of cone in the retinas of birds. J Comp Physiol A 159:473–479

    Article  PubMed  CAS  Google Scholar 

  • Coemans MAMJ, Vos JJ (1992) On the perception of polarized light by the homing pigeon. PhD Dissertation, Universiteit Utrecht, Utrecht

  • Cowan WM (1970) Centrifugal fibres to the avian retina. Br Med Bull 26:112–118

    Google Scholar 

  • Cuthill IC, Partridge JC, Bennett ATD, Church SC, Hart NS, Hunt S (2000) Ultraviolet vision in birds. Adv Study Behav 29:159–214

    Google Scholar 

  • Dabrowska B (1975) Investigations on visual acuity of some corvine species. Folia Biol 23:311–332

    CAS  Google Scholar 

  • Dawson WW, Maida TM, Rubin ML (1982) Human pattern evoked retinal responses are altered by optic atrophy. Invest Ophthalmol Vis Sci 22:796–803

    PubMed  CAS  Google Scholar 

  • De Valois RL, De Valois KK (1990) Spatial vision. Oxford psychology series 14. Oxford University Press, New York

    Google Scholar 

  • De Valois RL, Morgan H, Snodderly DM (1974) Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Res 14:75–81

    Article  PubMed  Google Scholar 

  • Donner K, Copenhagen DR, Reuter T (1990) Weber and noise adaptation in the retina of the toad Bufo marinus. J Gen Physiol 95:733–753

    Article  PubMed  CAS  Google Scholar 

  • Eaton MD, Lanyon SM (2003) The ubiquity of avian ultraviolet plumage reflectance. Proc Biol Sci 270:1721–1726

    Article  PubMed  Google Scholar 

  • Elliott DB (1987) Contrast sensitivity decline with ageing: a neural or optical phenomenon? Ophthalmic Physiol Opt 7:415–419

    Article  PubMed  CAS  Google Scholar 

  • Emmerton J (1983) Pattern discrimination in the near-ultraviolet by pigeons. Percept Psychophys 34:555–559

    PubMed  CAS  Google Scholar 

  • Emmerton J, Delius JD (1980) Wavelength discrimination in the “visible” and UV spectrum by pigeons. J Comp Physiol A 141:47–52

    Article  Google Scholar 

  • Fite KV (1973) Anatomical and behavioral correlates of visual acuity in the Great Horned Owl. Vision Res 13:219–230

    Article  PubMed  CAS  Google Scholar 

  • Fite KV, Rosenfield-Wessels S (1975) A comparative study of deep avian foveas. Brain Behav Evol 12:97–115

    Article  PubMed  CAS  Google Scholar 

  • Gaffney MF, Hodos W (2003) The visual acuity and refractive state of the American kestrel (Falco sparverius). Vision Res 43:2053–2059

    Article  PubMed  Google Scholar 

  • Ghim MM (2003) Spatial contrast sensitivity of birds. PhD Dissertation, University of Maryland, College Park

  • Ghim MM (1997) The effects of retinal illumination and target luminance on the contrast sensitivity function of pigeons. Master’s thesis, University of Maryland, College Park

  • Hahmann U, Güntürkün O (1993) The visual acuity for the lateral visual field of the pigeon (Columba livia). Vision Res 33:1659–1664

    Article  PubMed  CAS  Google Scholar 

  • Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703

    Article  PubMed  CAS  Google Scholar 

  • Hawryshyn CW (1991) Light-adaptation properties of the ultraviolet-sensitive cone mechanism in comparison to the other receptor mechanisms of goldfish. Vis Neurosci 6:293–301

    PubMed  CAS  Google Scholar 

  • Hecht S, Shlaer S, Pirenne MH (1942). Energy, quanta, and vision. J Gen Physiol 25:819–840

    Article  PubMed  Google Scholar 

  • Hemmi JM, Mark RF (1998) Visual acuity, contrast sensitivity and retinal magnification in a marsupial, the tammar wallaby (Macropus eugenii). J Comp Physiol A 183:379–387

    Article  PubMed  CAS  Google Scholar 

  • Hirsch J (1982) Falcon visual sensitivity to grating contrast. Nature 300:57–58

    Article  Google Scholar 

  • Hodos W, Ghim MM, Miller RF, Sternheim CE, Currie DG (1997) Comparative analysis of contrast sensitivity. Invest Ophthalmol Vis Sci 38:S634

    Google Scholar 

  • Hodos W, Ghim MM, Potocki A, Fields JN, Storm T (2002) Contrast sensitivity in pigeons: a comparison of behavioral and pattern ERG methods. Doc Ophthalmol 104:107–118

    Article  PubMed  Google Scholar 

  • Hodos W, Miller RF, Fite KV (1991a) Age-dependent changes in visual acuity and retinal morphology in pigeons. Vision Res 31:669–677

    Article  CAS  Google Scholar 

  • Hodos W, Miller RF, Fite KV, Porciatti V, Holden AL, Lee J-Y, Djamgoz MBA (1991b) Life-span changes in the visual acuity and retina in birds. In: Bagnoli P, Hodos W (eds) The changing visual system. Plenum, New York, pp 137–148

    Google Scholar 

  • Hodos W, Potocki A, Ghim M, Gaffney M (2003) Temporal modulation of spatial contrast vision in pigeons (Columba livia). Vision Res 43:761–767

    Article  PubMed  Google Scholar 

  • Hsu A, Smith RG, Buchsbaum G, Sterling P (2000) Cost of cone coupling to trichromacy in primate fovea. J Opt Soc Am 17:635–640

    Article  CAS  Google Scholar 

  • Irvin GE, Casagrande VA, Norton TT (1993) Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Vis Neurosci 10:363–373

    PubMed  CAS  Google Scholar 

  • Jacobs GH (1977) Visual capacities of the owl monkey (Aotus trivirgatus)-II. Spatial contrast sensitivity. Vision Res 17:821–825

    Article  PubMed  CAS  Google Scholar 

  • Jacobs GH, Birch DG, Blakeslee B (1982) Visual acuity and spatial contrast sensitivity in tree squirrels. Behav Process 7:367–375

    Article  Google Scholar 

  • Jacobs GH, Blakeslee B, McCourt ME, Tootell RBH (1980) Visual sensitivity of ground squirrels to spatial and temporal luminance variations. J Comp Physiol 136:291–299

    Article  Google Scholar 

  • Jacobs GH, Neitz J, Deegan JF (1991) Retinal receptors in rodents maximally sensitive to UV light. Nature 353:655–656

    Article  PubMed  CAS  Google Scholar 

  • Jane SD, Bowmaker JK (1988) Tetrachromatic colour vision in the duck (Anas playtrhynchos L.): Microspectrophotometry of visual pigments and oil droplets. J Comp Physiol A 162:225–235

    Article  CAS  Google Scholar 

  • Jassik-Gerschenfeld D, Hardy O (1979) Single-neuron responses to moving sine-wave gratings in the pigeon optic tectum. Vision Res 19:993–999

    Article  PubMed  CAS  Google Scholar 

  • Kaplan E, Lee BB, Shapley RM (1990). New views of primate retinal function. Prog Retinal Res 9:273–336

    Article  Google Scholar 

  • Keller J, Strasburger H, Cerutti DT, Sabel BA (2000) Assessing spatial vision-automated measurement of the contrast-sensitivity function in the hooded rat. J Neurosci Methods 97:103–110

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1978) Visual detection of spatial contrast; influence of location in the visual field, target extent and illumination. Biol Cybern 30:157–167

    Article  PubMed  CAS  Google Scholar 

  • Kulikowski JJ (1978) Pattern and movement detection in man and rabbit: separation and comparison of occipital potentials. Vision Res 18:183–189

    Article  PubMed  CAS  Google Scholar 

  • Langston A, Casagrande VA, Fox R (1986) Spatial resolution of the Galago. Vision Res 26:791–796

    Article  PubMed  CAS  Google Scholar 

  • Lee J-Y, Holden LA, Djamgoz MBA (1997) Effects of ageing on spatial aspects of the pattern electroretinogram in male and female quail. Vision Res 37:505–514

    Article  PubMed  CAS  Google Scholar 

  • Legg CR (1984) Contrast sensitivity at low spatial frequencies in the hooded rat. Vision Res 24:159–161

    Article  PubMed  CAS  Google Scholar 

  • Luntinen O, Rovamo J, Näsänen R (1995) Research note: modeling the increase of contrast sensitivity with grating area and exposure time. Vision Res 35:2339–2346

    Article  PubMed  CAS  Google Scholar 

  • Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211:953–955

    Article  PubMed  Google Scholar 

  • Maier EJ (1994) To deal with the “Invisible”—on the biological significance of UV sensitivity in birds. Naturwissenshaften 80:476–478

    Google Scholar 

  • Maier EJ, Bowmaker JK (1993) Colour vision in the passeriform bird, Leiothrix lutea: correlation of visual pigment absorbance and oil droplet transmission with spectral sensitivity. J Comp Physiol A 172:295–301

    Article  Google Scholar 

  • Martin GR (1986) The eye of a Passeriform bird, the European starling (Sturnus vulgaris): eye movement amplitude, visual fields and schematic optics. J Comp Physiol A 159:545–557

    Article  Google Scholar 

  • Martin GR, Gordon IE (1974) Visual acuity in the tawny owl (Strix aluco). Vision Res 14:1393–1397

    Article  PubMed  CAS  Google Scholar 

  • Masson G, Mestre DR, Blin O, Pailhous J (1994) Low luminance contrast sensitivity: Effects of training on psychophysical and optokinetic nystagmus thresholds in man. Vision Res 14:1893–1899

    Article  Google Scholar 

  • May JG, Reed JL, Marx MS, Van Dyk HJL (1982) The assessment of optic nerve function with flash-and pattern-elicited retinography. Invest Ophthalmol Vis Sci 22:S220

    Google Scholar 

  • Merigan WH (1976) The contrast sensitivity of the squirrel monkey (Saimiri sciureus). Vision Res 16:375–379

    Article  PubMed  CAS  Google Scholar 

  • Northmore DPM, Dvorak CA (1979) Contrast sensitivity and acuity of the goldfish. Vision Res 19:255–261

    Article  PubMed  CAS  Google Scholar 

  • Nye PW (1968) The binocular acuity of the pigeon measured in terms of the modulation transfer function. Vision Res 8:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Owsley C, Sekuler R, Siemsen D (1983) Contrast sensitivity throughout adulthood. Vision Res 23:689–699

    Article  PubMed  CAS  Google Scholar 

  • Pak MA (1984) Ocular refraction and visual contrast sensitivity of the rabbit, determined by the VECP. Vision Res 24:341–345

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Merigan WH (1981) The luminance dependence of spatial vision in the cat. Vision Res 21:1333–1339

    Article  PubMed  CAS  Google Scholar 

  • Peachey NS, Seiple WH (1987) Contrast sensitivity of the human pattern electroretinogram. Invest Ophthalmol Vis Sci 28:151–157

    PubMed  CAS  Google Scholar 

  • Petry HM, Fox R, Casagrande VA (1984) Spatial contrast sensitivity of the tree shrew, Vision Res 24:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Porciatti V, Pizzorusso T, Maffei L (2002) Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol 104:69–82

    Article  PubMed  Google Scholar 

  • Porciatti V, Fontanesi G, Bagnoli P (1989) The electroretinogram of the little owl (Athene noctua). Vision Res 29:1693–1698

    Article  PubMed  CAS  Google Scholar 

  • Porciatti V, Hodos W, Signorini G, Bramanti F (1991) Electroretinographic changes in aged pigeons. Vision Res 31:661–668

    Article  PubMed  CAS  Google Scholar 

  • Purpura K, Kaplan E, Shapley RM (1988) Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci USA 85:4534–4537

    Article  PubMed  CAS  Google Scholar 

  • Purpura K, Tranchina D, Kaplan E, Shapley RM (1990) Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells. Vis Neurosci 4:75–93

    PubMed  CAS  Google Scholar 

  • Regan D (Ed) (1991) Spatial vision. In: Cronly-Dillon J (ed) Vision and visual dysfunction 10. CRC, Boston

  • Remy M, Emmerton J (1989) Behavioral spectral sensitivities of different retinal areas in pigeons. Behav Neurosci 103:170–177

    Article  PubMed  CAS  Google Scholar 

  • Reymond L (1985) Spatial visual acuity of the eagle Aquila audax: a behavioural, optical and anatomical investigation. Vision Res 25:1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Reymond L (1987) Spatial visual acuities of the falcon, Falco berigora: a behavioural, optical, and anatomical investigation. Vision Res 27:1859–1874

    Article  PubMed  CAS  Google Scholar 

  • Reymond L, Wolfe J (1981) Behavioural determination of the contrast sensitivity function of the eagle Aquila audax. Vision Res 21:263–271

    Article  PubMed  CAS  Google Scholar 

  • Robson JG (1966) Spatial and temporal contrast-sensitivity functions of the visual system. J Opt Soc Am 56:1141–1142

    Google Scholar 

  • Rovamo J, Luntinen O, Näsänen R (1993) Modelling the dependence of contrast sensitivity on grating area and spatial frequency. Vision Res 33:2773–2788

    Article  PubMed  CAS  Google Scholar 

  • Savoy RL, McCann JJ (1975) Visibility of low-spatial-frequency sine-wave targets: dependence on number of cycles. J Opt Soc Am 65:343–350

    PubMed  CAS  Google Scholar 

  • Schaeffel F, Wagner H (1992) Barn owls have symmetrical accommodation in both eyes, but independent papillary responses to light. Vision Res 32:1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Schlaer R (1971) An eagle’s eye: quality of the retinal image. Science 176:920–922

    Article  Google Scholar 

  • Shapley RM, Enroth-Cugell C (1984) Visual adaptation and retinal gain controls. Prog Retinal Res 3:263–346

    Article  Google Scholar 

  • Silveira LCL, Heywood CA, Cowey A (1987) Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically. Vision Res 27:1719–1731

    Article  PubMed  CAS  Google Scholar 

  • Silveira LCL, Picanco-Diniz CW, Oswaldo-Cruz E (1982) Contrast sensitivity function and visual acuity of the opossum. Vision Res 22:1371–1377

    Article  PubMed  CAS  Google Scholar 

  • Sloane ME, Owsley C, Jackson CA (1988) Aging and luminance-adaptation effects on spatial contrast sensitivity. J Opt Soc Am A 5:2181–2190

    Article  PubMed  CAS  Google Scholar 

  • Smith EL, Greenwood VJ, Bennett AT (2002) Ultraviolet colour perception in European starlings and Japanese quail. J Exp Biol 205:3299–3306

    PubMed  Google Scholar 

  • Snyder AW, Miller WH (1978) Telephoto lens system of falconiform eye. Nature 275:127–129

    Article  PubMed  CAS  Google Scholar 

  • Tucker VA (2000) The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol 203:3745–3754

    PubMed  CAS  Google Scholar 

  • Uhlrich DJ, Essock EA, Lehmkuhle S (1981) Cross-species correspondence of spatial contrast sensitivity functions. Behav Brain Res 2:291–299

    Article  PubMed  CAS  Google Scholar 

  • Virsu V, Rovamo J (1979) Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp Brain Res 37:475–494

    Article  PubMed  CAS  Google Scholar 

  • Volle RL (1990) Chap. 17: Drugs affecting neuromuscular transmission. In: Craig CR, Stitzel RE (eds) Modern pharmacology, 3rd edn. Little, Brown, and Co, Boston

    Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B 265:351–358

    Article  CAS  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Press, Bloomfield Hills

    Google Scholar 

  • Wandell BA (1995) Foundations of vision. Sinauer Associates, Sunderland

    Google Scholar 

  • Wathey JC, Pettigrew JD (1989) Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto alba. Brain Behav Evol 33:279–292

    Article  PubMed  CAS  Google Scholar 

  • Watson AB, Nachmias J (1977) Patterns of temporal interaction in the detection of gratings. Vision Res 17:893–902

    Article  PubMed  CAS  Google Scholar 

  • Wright AA (1972) Psychometric and psychophysical hue discrimination functions for the pigeon. Vision Res 12:1447–1464

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Makous W (1994) Spatiotemporal separability in contrast sensitivity. Vision Res 30:2569–2576

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Christopher Murphy of the School of Raptor Ophthalmology at the University of Wisconsin, Madison, for sharing his knowledge and experience on raptor cycloplegia and mydriasis, and to Drs. Katherine Nepote, Theodore Mashima, and Glenn Olsen for invaluable assistance and advice on avian anesthesia. The authors are deeply obliged to Dr. Vittorio Porciatti of the Bascom Palmer Eye Institute for his PERG expertise. For the many weeks dedicated to assisting us with trapping, we thank Dr. Bernard Lohr, Shannon Bentz, Rebecca Duckworth, and Matthew Gaffney. For the generous loan of subjects, we thank Professor Catherine Carr, Dr. John French, and Professor Robert Dooling. This research was made possible by funding from the Neuroethology Training Grant at the University of Maryland at College Park, National Science Foundation Grant IBN9818054, National Renewable Energy Laboratory Grant XAM9-29211-01, and the William Orr Dingwall Fellowship Foundation. This experiment complies with the “Principles of animal care”, publication No. 86-23, revised 1985, of the National Institute of Health, and also with the current laws of the USA, the country in which the experiment was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Hodos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghim, M.M., Hodos, W. Spatial contrast sensitivity of birds. J Comp Physiol A 192, 523–534 (2006). https://doi.org/10.1007/s00359-005-0090-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0090-5

Keywords

Navigation