Skip to main content
Log in

Spatial hearing in Cope’s gray treefrog: I. Open and closed loop experiments on sound localization in the presence and absence of noise

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The ability to reliably locate sound sources is critical to anurans, which navigate acoustically complex breeding choruses when choosing mates. Yet, the factors influencing sound localization performance in frogs remain largely unexplored. We applied two complementary methodologies, open and closed loop playback trials, to identify influences on localization abilities in Cope’s gray treefrog, Hyla chrysoscelis. We examined localization acuity and phonotaxis behavior of females in response to advertisement calls presented from 12 azimuthal angles, at two signal levels, in the presence and absence of noise, and at two noise levels. Orientation responses were consistent with precise localization of sound sources, rather than binary discrimination between sources on either side of the body (lateralization). Frogs were unable to discriminate between sounds arriving from forward and rearward directions, and accurate localization was limited to forward sound presentation angles. Within this region, sound presentation angle had little effect on localization acuity. The presence of noise and low signal-to-noise ratios also did not strongly impair localization ability in open loop trials, but females exhibited reduced phonotaxis performance consistent with impaired localization during closed loop trials. We discuss these results in light of previous work on spatial hearing in anurans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IAD:

Interaural amplitude difference

ITD:

Interaural time difference

SNR:

Signal-to-noise ratio

SPL:

Sound pressure level

References

  • Beckers OM, Schul J (2004) Phonotaxis in Hyla versicolor (Anura, Hylidae): the effect of absolute call amplitude. J Comp Physiol A 190:869–876

    Google Scholar 

  • Bee MA (2007a) Selective phonotaxis by male wood frogs (Rana sylvatica) to the sound of a chorus. Behav Ecol Sociobiol 61:955–966

    Article  Google Scholar 

  • Bee MA (2007b) Sound source segregation in grey treefrogs: spatial release from masking by the sound of a chorus. Anim Behav 74:549–558

    Article  Google Scholar 

  • Bee MA (2008a) Finding a mate at a cocktail party: spatial release from masking improves acoustic mate recognition in grey treefrogs. Anim Behav 75:1781–1791

    Article  PubMed Central  PubMed  Google Scholar 

  • Bee MA (2008b) Parallel female preferences for call duration in a diploid ancestor of an allotetraploid treefrog. Anim Behav 76:845–853

    Article  PubMed Central  PubMed  Google Scholar 

  • Bee MA (2010) Spectral preferences and the role of spatial coherence in simultaneous integration in gray treefrogs (Hyla chrysoscelis). J Comp Psychol 124:412–424

    Article  PubMed Central  PubMed  Google Scholar 

  • Bee MA (2012) Sound source perception in anuran amphibians. Curr Opin Neurobiol 22:301–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bee MA, Riemersma KK (2008) Does common spatial origin promote the auditory grouping of temporally separated signal elements in grey treefrogs? Anim Behav 76:831–843

    Article  PubMed Central  PubMed  Google Scholar 

  • Bee MA, Schwartz JJ (2009) Behavioral measures of signal recognition thresholds in frogs in the presence and absence of chorus-shaped noise. J Acoust Soc Am 126(5):2788–2801

    Article  PubMed Central  PubMed  Google Scholar 

  • Bee MA, Swanson EM (2007) Auditory masking of anuran advertisement calls by road traffic noise. Anim Behav 74:1765–1776

    Article  Google Scholar 

  • Bosch J, Márquez R (2000) Tympanum fluctuating asymmetry, body size and mate choice in female midwife toads (Alytes obstetricans). Behaviour 137:1211–1222

    Article  Google Scholar 

  • Brown CH, May BJ (2005) Comparative mammalian sound localization. In: Popper AN, Fay RR (eds) Sound source localization, vol 25. Springer handbook of auditory research. Springer, New York, pp 124–178

    Google Scholar 

  • Caldwell MS, Lee N, Johns AR, Christensen-Dalsgaard J, Bee MA (2014) Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality of the amplitude and phase of tympanum vibrations. J Comp Physiol A. doi:10.1007/s00359-014-0883-5

  • Christensen-Dalsgaard J (2005) Directional hearing in nonmammalian tetrapods. In: Popper AN, Fay RR (eds) Sound source localization, vol 25. Springer handbook of auditory research. Springer, New York, pp 67–123

    Google Scholar 

  • Christensen-Dalsgaard J (2011) Vertebrate pressure-gradient receivers. Hearing Res 273(1–2):37–45. doi:10.1016/j.heares.2010.08.007

    Article  Google Scholar 

  • Christensen-Dalsgaard J, Carr CE (2008) Evolution of a sensory novelty: tympanic ears and the associated neural processing. Brain Res Bull 75(2–4):365–370. doi:10.1016/j.brainresbull.2007.10.044

    Article  PubMed Central  PubMed  Google Scholar 

  • Christie K, Schul J, Feng AS (2010) Phonotaxis to male’s calls embedded within a chorus by female gray treefrogs, Hyla versicolor. J Comp Physiol A 196(8):569–579. doi:10.1007/s00359-010-0544-2

    Article  Google Scholar 

  • Conant R, Collins JT (1998) A field guide to reptiles and amphibians of eastern and central North America. Houghton Mifflin, New York

    Google Scholar 

  • Farris HE, Ryan MJ (2011) Relative comparisons of call parameters enable auditory grouping in frogs. Nat Commun 2:410

    Article  PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2002) The effects of spatially separated call components on phonotaxis in túngara frogs: evidence for auditory grouping. Brain Behav Evol 60(3):181–188

    Article  PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2005) The effects of time, space and spectrum on auditory grouping in túngara frogs. J Comp Physiol A 191(12):1173–1183

    Article  CAS  Google Scholar 

  • Feng AS, Capranica RR (1978) Sound localization in anurans II. Binaural interaction in superior olivary nucleus of the green tree frog (Hyla cinerea). J Neurophysiol 41(1):43–54

    CAS  PubMed  Google Scholar 

  • Feng AS, Schul J (2007) Sound processing in real-world environments. In: Narins PA, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 323–350

    Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green treefrog (Hyla cinerea) and the barking treefrog (Hyla gratiosa). J Comp Physiol A 107(3):241–252

    Article  Google Scholar 

  • Gerhardt HC (1975) Sound pressure levels and radiation patterns of vocalizations of some North American frogs and toads. J Comp Physiol A 102(1):1–12

    Article  Google Scholar 

  • Gerhardt HC (2001) Acoustic communication in two groups of closely related treefrogs. Adv Stud Behav 30:99–167

    Article  Google Scholar 

  • Gerhardt HC, Bee MA (2007) Recognition and localization of acoustic signals. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians, vol 28. Springer handbook of auditory research. Springer, New York, pp 113–146

    Google Scholar 

  • Gerhardt HC, Huber F (eds) (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. Chicago University Press, Chicago

    Google Scholar 

  • Gerhardt HC, Klump GM (1988) Phonotactic responses and selectivity of barking treefrogs (Hyla gratiosa) to chorus sounds. J Comp Physiol A 163(6):795–802

    Article  Google Scholar 

  • Gerhardt HC, Rheinlaender J (1980) Accuracy of sound localization in a miniature dendrobatid frog. Naturwissenschaften 67(7):362–363

    Article  Google Scholar 

  • Gerhardt HC, Rheinlaender J (1982) Localization of an elevated sound source by the green tree frog. Science 217(4560):663–664

    Article  Google Scholar 

  • Gomez D, Richardson C, Lengagne T, Plenet S, Joly P, Lena JP, Thery M (2009) The role of nocturnal vision in mate choice: females prefer conspicuous males in the European tree frog (Hyla arborea). Proc R Soc Lond Ser B Biol Sci 276(1666):2351–2358. doi:10.1098/rspb.2009.0168

    Article  Google Scholar 

  • Good MD, Gilkey RH (1996) Sound localization in noise: the effect of signal-to-noise ratio. J Acoust Soc Am 99(2):1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24(2):95–112

    Article  Google Scholar 

  • Ho CCK, Narins PM (2006) Directionality of the pressure-difference receiver ears in the northern leopard frog, Rana pipiens pipiens. J Comp Physiol A 192(4):417–429

    Article  Google Scholar 

  • Hödl W, Amézquita A, Narins PM (2004) The role of call frequency and the auditory papillae in phonotactic behavior in male Dart-poison frogs Epipedobates femoralis (Dendrobatidae). J Comp Physiol A 190(10):823–829. doi:10.1007/s00359-004-0536-1

    Article  Google Scholar 

  • Hofman PM, Van Opstal AJ (1998) Spectro-temporal factors in two-dimensional human sound localization. J Acoust Soc Am 103(5):2634–2648. doi:10.1121/1.422784

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen MB (1991) Comparative studies of the biophysics of directional hearing in anurans. J Comp Physiol A 169(5):591–598

    Article  Google Scholar 

  • Jørgensen MB, Gerhardt HC (1991) Directional hearing in the gray tree frog Hyla versicolor: eardrum vibrations and phonotaxis. J Comp Physiol A 169(2):177–183

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Schmitz B, Christensen-Dalsgaard J (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol A 168(2):223–232

    Article  Google Scholar 

  • Klump GM (1995) Studying sound localization in frogs with behavioral methods. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in comparative psychoacoustics. Birkhäuser, Basel, pp 221–233

    Chapter  Google Scholar 

  • Klump GM, Gerhardt HC (1989) Sound localization in the barking treefrog. Naturwissenschaften 76(1):35–37

    Article  CAS  PubMed  Google Scholar 

  • Lingner A, Wiegrebe L, Grothe B (2012) Sound localization in noise by gerbils and humans. JARO 13(2):237–248. doi:10.1007/s10162-011-0301-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Lorenzi C, Gatehouse S, Lever C (1999) Sound localization in noise in normal-hearing listeners. J Acoust Soc Am 105(3):1810–1820. doi:10.1121/1.426719

    Article  CAS  PubMed  Google Scholar 

  • Michelsen A, Jørgensen MB, Christensen-Dalsgaard J, Capranica RR (1986) Directional hearing of awake, unrestrained treefrogs. Naturwissenschaften 73(11):682–683. doi:10.1007/bf00366697

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159. doi:10.1146/annurev.psych.42.1.135

    Article  CAS  PubMed  Google Scholar 

  • Narins PM (1992) Biological constraints on anuran acoustic communication: auditory capabilities of naturally behaving animals. In: Webster DB, Popper AN, Fay RR (eds) The evolutionary biology of hearing. Springer, New York, pp 439–454

    Chapter  Google Scholar 

  • Narins PM, Zelick R (1988) The effects of noise on auditory processing and behavior in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 511–536

    Google Scholar 

  • Narins PM, Hödl W, Grabul DS (2003) Bimodal signal requisite for agonistic behavior in a dart-poison frog, Epipedobates femoralis. Proc Natl Acad Sci USA 100(2):577–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narins PM, Grabul DS, Soma KK, Gaucher P, Hödl W (2005) Cross-modal integration in a dart-poison frog. Proc Natl Acad Sci USA 102(7):2425–2429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nityananda V, Bee MA (2011) Finding your mate at a cocktail party: frequency separation promotes auditory stream segregation of concurrent voices in multi-species frog choruses. PLoS One 6(6):e21191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nityananda V, Bee MA (2012) Spatial release from masking in a free-field source identification task by gray treefrogs. Hearing Res 285:86–97

    Article  Google Scholar 

  • Passmore NI, Telford SR (1981) The effect of chorus organization on mate localization in the painted reed frog (Hyperolius marmoratus). Behav Ecol Sociobiol 9(4):291–293

    Article  Google Scholar 

  • Passmore NI, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus): the localization of elevated sound sources. J Comp Physiol A 154(2):189–197

    Article  Google Scholar 

  • Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: vibration measurements under free- and closed-field acoustic conditions. Proc R Soc Lond Ser B Biol Sci 219(1217):371–396. doi:10.1098/rspb.1983.0079

    Article  CAS  Google Scholar 

  • Ptacek MB, Gerhardt HC, Sage RD (1994) Speciation by polyploidy in treefrogs: multiple origins of the tetraploid, Hyla versicolor. Evolution 48(3):898–908

    Article  Google Scholar 

  • Rheinlaender J, Klump GM (1988) Behavioral aspects of sound localization. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington T (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 297–305

    Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol A 133(4):247–255

    Article  Google Scholar 

  • Rosenthal GG, Rand AS, Ryan MJ (2004) The vocal sac as a visual cue in anuran communication: an experimental analysis using video playback. Anim Behav 68:55–58

    Article  Google Scholar 

  • Schwartz JJ, Gerhardt HC (1989) Spatially mediated release from auditory masking in an anuran amphibian. J Comp Physiol A 166(1):37–41

    Article  Google Scholar 

  • Schwartz JJ, Buchanan BW, Gerhardt HC (2001) Female mate choice in the gray treefrog (Hyla versicolor) in three experimental environments. Behav Ecol Sociobiol 49(6):443–455

    Article  Google Scholar 

  • Shen JX, Feng AS, Xu ZM, Yu ZL, Arch VS, Yu XJ, Narins PM (2008) Ultrasonic frogs show hyperacute phonotaxis to female courtship calls. Nature 453(7197):914–916

    Article  CAS  PubMed  Google Scholar 

  • Swanson EM, Tekmen SM, Bee MA (2007) Do female anurans exploit inadvertent social information to locate breeding aggregations? Can J Zool 85:921–932

    Article  Google Scholar 

  • Taylor RC, Buchanan BW, Doherty JL (2007) Sexual selection in the squirrel treefrog Hyla squirella: the role of multimodal cue assessment in female choice. Anim Behav 74:1753–1763

    Article  Google Scholar 

  • Taylor RC, Klein BA, Stein J, Ryan MJ (2008) Faux frogs: multimodal signalling and the value of robotics in animal behaviour. Anim Behav 76:1089–1097

    Article  Google Scholar 

  • Taylor RC, Klein BA, Ryan MJ (2011a) Inter-signal interaction and uncertain information in anuran multimodal signals. Curr Zool 57(2):153–161

    Google Scholar 

  • Taylor RC, Klein BA, Stein J, Ryan MJ (2011b) Multimodal signal variation in space and time: how important is matching a signal with its signaler? J Exp Biol 214(5):815–820. doi:10.1242/jeb.043638

    Article  PubMed  Google Scholar 

  • Ursprung E, Ringler M, Hödl W (2009) Phonotactic approach pattern in the neotropical frog Allobates femoralis: a spatial and temporal analysis. Behaviour 146:153–170. doi:10.1163/156853909x410711

    Article  Google Scholar 

  • Vélez A, Bee MA (2013) Signal recognition by green treefrogs (Hyla cinerea) and Cope’s gray treefrogs (Hyla chrysoscelis) in naturally fluctuating noise. J Comp Psychol 127:166–178

    Article  PubMed  Google Scholar 

  • Vélez A, Schwartz JJ, Bee MA (2014) Anuran acoustic signal perception in noisy environments. In: Brumm H (ed) Animal communication and noise. Springer, New York (in press)

    Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90(2):858–865. doi:10.1121/1.401953

    Article  CAS  PubMed  Google Scholar 

  • Wallach H (1939) On sound localization. J Acoust Soc Am 10:270–274

    Article  Google Scholar 

  • Ward JL, Buerkle NP, Bee MA (2013a) Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs. Hearing Res 306:63–75

    Article  Google Scholar 

  • Ward JL, Love EK, Vélez A, Buerkle NP, O’Bryan LR, Bee MA (2013b) Multitasking males and multiplicative females: dynamic signalling and receiver preferences in Cope’s grey treefrog (Hyla chrysoscelis). Anim Behav 86:231–243

    Article  Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Wendler G (1989) Acoustic orientation of crickets (Gryllus campestris) in the presence of two sound sources. Naturwissenschaften 76(3):128–129

    Article  Google Scholar 

  • Wightman FL, Kistler DJ (1999) Resolution of front-back ambiguity in spatial hearing by listener and source movement. J Acoust Soc Am 105(5):2841–2853. doi:10.1121/1.426899

    Article  CAS  PubMed  Google Scholar 

  • Wollerman L, Wiley RH (2002) Background noise from a natural chorus alters female discrimination of male calls in a neotropical frog. Anim Behav 63:15–22

    Article  Google Scholar 

Download references

Acknowledgments

We thank Nate Buerkle and Betsy Linehan-Skillings for help testing frogs, Anastasia Johns for help with video analyses, Sandra Tekmen and Jessica Ward for logistical support, and Norman Lee, Jessica Ward, and two anonymous reviewers for helpful feedback on earlier drafts of the manuscript. All procedures followed the Guide for the Care and Use of Laboratory Animals and were approved by the University of Minnesota’s Institutional Animal Care and Use Committee (#0809A46721 and #1202A10178). This work was supported by the National Institute on Deafness and Other Communication Disorders (R01 DC009582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Caldwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldwell, M.S., Bee, M.A. Spatial hearing in Cope’s gray treefrog: I. Open and closed loop experiments on sound localization in the presence and absence of noise. J Comp Physiol A 200, 265–284 (2014). https://doi.org/10.1007/s00359-014-0882-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0882-6

Keywords

Navigation