Skip to main content
Erschienen in: Pediatric Surgery International 6/2010

01.06.2010 | Review Article

Tissue engineering and regenerative medicine research perspectives for pediatric surgery

verfasst von: Amulya K. Saxena

Erschienen in: Pediatric Surgery International | Ausgabe 6/2010

Einloggen, um Zugang zu erhalten

Abstract

Tissue engineering and regenerative medicine research is being aggressively pursued in attempts to develop biological substitutes to replace lost tissue or organs. Remarkable degrees of success have been achieved in the generation of a variety of tissues and organs as a result of concerted contributions by multidisciplinary groups in the field of biotechnology. Engineering of an organ is a complex process which is initiated by appropriate sourcing of cells and their controlled proliferation to achieve critical numbers for seeding on biodegradable scaffolds in order to create cell-scaffold constructs, which are thereafter maintained in bioreactors to generate tissues identical to those required for replacement. Extensive efforts in understanding the characteristics of cells and their interaction with specifically tailored scaffolds holds the key to their attachment, controlled proliferation and differentiation, intercommunication, and organization to form tissues. The demand for tissue-engineered organs is enormous and this technology holds the promise to supply customized organs to overcome the severe shortages that are currently faced by the pediatric patient, especially due to organ-size mismatch. The contemporary state of tissue-engineering technology presented in this review summarizes the advances in the various areas of regenerative medicine and addresses issues that are associated with its future implementation in the pediatric surgical patient.
Literatur
2.
Zurück zum Zitat Lysaght MJ, O’Loughlin JA (2000) Demographic scope and economic magnitude of contemporary organ replacement therapies. ASAIO J 46:515–521PubMedCrossRef Lysaght MJ, O’Loughlin JA (2000) Demographic scope and economic magnitude of contemporary organ replacement therapies. ASAIO J 46:515–521PubMedCrossRef
3.
Zurück zum Zitat Eurotransplant International Foundation Annual Report 2008. In: Oosterlee A, Rahmel A (eds) Eurotransplant International Foundation, Leiden, The Netherlands. ISBN-13: 978-90-71658-28-0 Eurotransplant International Foundation Annual Report 2008. In: Oosterlee A, Rahmel A (eds) Eurotransplant International Foundation, Leiden, The Netherlands. ISBN-13: 978-90-71658-28-0
4.
Zurück zum Zitat 2008 Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1998–2007. U.S. Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville, MD 2008 Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1998–2007. U.S. Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville, MD
5.
Zurück zum Zitat Giovanelli M, Gupte GL, McKiernan P et al (2009) Impact of change in the United Kingdom pediatric donor organ allocation policy for intestinal transplantation. Transplantation 87:1695–1699PubMedCrossRef Giovanelli M, Gupte GL, McKiernan P et al (2009) Impact of change in the United Kingdom pediatric donor organ allocation policy for intestinal transplantation. Transplantation 87:1695–1699PubMedCrossRef
6.
Zurück zum Zitat Tiao GM, Alonso MH, Ryckman FC (2006) Pediatric liver transplantation. Semin Pediatr Surg 15:218–227PubMedCrossRef Tiao GM, Alonso MH, Ryckman FC (2006) Pediatric liver transplantation. Semin Pediatr Surg 15:218–227PubMedCrossRef
7.
Zurück zum Zitat Harada KM, Mandia-Sampaio EL, de Sandes-Freitas TV et al (2009) Risk factors associated with graft loss and patient survival after kidney transplantation. Transplant Proc 41:3667–3670PubMedCrossRef Harada KM, Mandia-Sampaio EL, de Sandes-Freitas TV et al (2009) Risk factors associated with graft loss and patient survival after kidney transplantation. Transplant Proc 41:3667–3670PubMedCrossRef
8.
Zurück zum Zitat Reding R (2005) Long-term complications of immunosuppression in pediatric liver recipients. Acta Gastroenterol Belg 68:453–456PubMed Reding R (2005) Long-term complications of immunosuppression in pediatric liver recipients. Acta Gastroenterol Belg 68:453–456PubMed
9.
Zurück zum Zitat Magee JC, Krishnan SM, Benfield MR (2008) Pediatric transplantation in the United States, 1997–2006. Am J Transplant 8:935–945PubMedCrossRef Magee JC, Krishnan SM, Benfield MR (2008) Pediatric transplantation in the United States, 1997–2006. Am J Transplant 8:935–945PubMedCrossRef
10.
Zurück zum Zitat Golomb J, Klutke CG, Lewin KJ et al (1989) Bladder neoplasms associated with augmentation cystoplasty: report of 2 cases and literature review. J Urol 142:377–380PubMed Golomb J, Klutke CG, Lewin KJ et al (1989) Bladder neoplasms associated with augmentation cystoplasty: report of 2 cases and literature review. J Urol 142:377–380PubMed
11.
Zurück zum Zitat Castagna MT, Mintz GS, Ohlmann P et al (2005) Incidence, location, magnitude, and clinical correlates of saphenous vein graft calcification: an intravascular ultrasound and angiographic study. Circulation 111:1148–1152PubMedCrossRef Castagna MT, Mintz GS, Ohlmann P et al (2005) Incidence, location, magnitude, and clinical correlates of saphenous vein graft calcification: an intravascular ultrasound and angiographic study. Circulation 111:1148–1152PubMedCrossRef
12.
13.
Zurück zum Zitat Jaffe R, Strauss BH (2007) Late and very late thrombosis of drug-eluting stents: evolving concepts and perspectives. J Am Coll Cardiol 50:119–127PubMedCrossRef Jaffe R, Strauss BH (2007) Late and very late thrombosis of drug-eluting stents: evolving concepts and perspectives. J Am Coll Cardiol 50:119–127PubMedCrossRef
14.
Zurück zum Zitat Guyen O, Lewallen DG, Cabanela ME (2008) Modes of failure of osteonics constrained tripolar implants: a retrospective analysis of forty-three failed implants. J Bone Joint Surg Am 90:1553–1560PubMedCrossRef Guyen O, Lewallen DG, Cabanela ME (2008) Modes of failure of osteonics constrained tripolar implants: a retrospective analysis of forty-three failed implants. J Bone Joint Surg Am 90:1553–1560PubMedCrossRef
15.
Zurück zum Zitat Yukata K, Doi K, Hattori Y et al (2009) Early breakage of a titanium volar locking plate for fixation of a distal radius fracture: case report. J Hand Surg Am 34:907–909PubMedCrossRef Yukata K, Doi K, Hattori Y et al (2009) Early breakage of a titanium volar locking plate for fixation of a distal radius fracture: case report. J Hand Surg Am 34:907–909PubMedCrossRef
16.
Zurück zum Zitat Schildhauer TA, Robie B, Muhr G et al (2006) Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma 20:476–484PubMedCrossRef Schildhauer TA, Robie B, Muhr G et al (2006) Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma 20:476–484PubMedCrossRef
17.
Zurück zum Zitat Jeandidier N, Riveline JP, Tubiana-Rufi N et al (2008) Treatment of diabetes mellitus using an external insulin pump in clinical practice. Diabetes Metab 34:425–438PubMedCrossRef Jeandidier N, Riveline JP, Tubiana-Rufi N et al (2008) Treatment of diabetes mellitus using an external insulin pump in clinical practice. Diabetes Metab 34:425–438PubMedCrossRef
18.
Zurück zum Zitat Piaggesi A (2004) Research development in the pathogenesis of neuropathic diabetic foot ulceration. Curr Diab Rep 4:419–423PubMedCrossRef Piaggesi A (2004) Research development in the pathogenesis of neuropathic diabetic foot ulceration. Curr Diab Rep 4:419–423PubMedCrossRef
19.
Zurück zum Zitat Senker J, Enzing C, Joly PB et al (2000) European exploitation of biotechnology-do government policies help? A recent survey of public spending on biotechnology in Europe suggests that money alone cannot stimulate growth of the sector. Nat Biotechnol 18:605–608PubMedCrossRef Senker J, Enzing C, Joly PB et al (2000) European exploitation of biotechnology-do government policies help? A recent survey of public spending on biotechnology in Europe suggests that money alone cannot stimulate growth of the sector. Nat Biotechnol 18:605–608PubMedCrossRef
20.
Zurück zum Zitat Tabata Y (2009) Biomaterial technology for tissue engineering applications. J R Soc Interface 6(Suppl 3):S311–S324PubMedCrossRef Tabata Y (2009) Biomaterial technology for tissue engineering applications. J R Soc Interface 6(Suppl 3):S311–S324PubMedCrossRef
22.
Zurück zum Zitat Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 15:205–219 Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 15:205–219
23.
Zurück zum Zitat Carrel A, Lindbergh C (1938) The culture of organs. Paul B. Hoeber Inc., Harper Brothers, New York Carrel A, Lindbergh C (1938) The culture of organs. Paul B. Hoeber Inc., Harper Brothers, New York
26.
Zurück zum Zitat Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRef Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRef
29.
Zurück zum Zitat Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278PubMedCrossRef Amit M, Carpenter MK, Inokuma MS et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278PubMedCrossRef
30.
Zurück zum Zitat Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19:193–204PubMedCrossRef Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19:193–204PubMedCrossRef
31.
Zurück zum Zitat Cowan CA, Klimanskaya I, McMahon J et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356PubMedCrossRef Cowan CA, Klimanskaya I, McMahon J et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356PubMedCrossRef
32.
Zurück zum Zitat Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 21:257–265PubMedCrossRef Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 21:257–265PubMedCrossRef
33.
Zurück zum Zitat Drukker M, Katz G, Urbach A et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869PubMedCrossRef Drukker M, Katz G, Urbach A et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869PubMedCrossRef
34.
35.
Zurück zum Zitat Hall VJ, Stojkovic P, Stojkovic M (2006) Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells 24:1628–1637PubMedCrossRef Hall VJ, Stojkovic P, Stojkovic M (2006) Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells 24:1628–1637PubMedCrossRef
36.
Zurück zum Zitat Colman A, Kind A (2000) Therapeutic cloning: concepts and practicalities. Trends Biotechnol 18:192–196PubMedCrossRef Colman A, Kind A (2000) Therapeutic cloning: concepts and practicalities. Trends Biotechnol 18:192–196PubMedCrossRef
37.
Zurück zum Zitat Priddle H, Jones DR, Burridge PW et al (2006) Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells 24:815–824PubMedCrossRef Priddle H, Jones DR, Burridge PW et al (2006) Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells 24:815–824PubMedCrossRef
38.
Zurück zum Zitat Raikwar SP, Mueller T, Zavazava N (2006) Strategies for developing therapeutic application of human embryonic stem cells. Physiology (Bethesda) 21:19–28 Raikwar SP, Mueller T, Zavazava N (2006) Strategies for developing therapeutic application of human embryonic stem cells. Physiology (Bethesda) 21:19–28
39.
Zurück zum Zitat Tian X, Kaufman DS (2005) Hematopoietic development of human embryonic stem cells in culture. Methods Mol Med 105:425–436PubMed Tian X, Kaufman DS (2005) Hematopoietic development of human embryonic stem cells in culture. Methods Mol Med 105:425–436PubMed
40.
Zurück zum Zitat Trounson A (2006) The production and directed differentiation of human embryonic stem cells. Endocr Rev 27:208–219PubMedCrossRef Trounson A (2006) The production and directed differentiation of human embryonic stem cells. Endocr Rev 27:208–219PubMedCrossRef
41.
Zurück zum Zitat Leker RR, McKay RD (2004) Using endogenous neural stem cells to enhance recovery from ischemic brain injury. Curr Neurovasc Res 1:421–427PubMedCrossRef Leker RR, McKay RD (2004) Using endogenous neural stem cells to enhance recovery from ischemic brain injury. Curr Neurovasc Res 1:421–427PubMedCrossRef
42.
Zurück zum Zitat Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedCrossRef Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedCrossRef
43.
Zurück zum Zitat Kuroda R, Usas A, Kubo S et al (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54:433–442PubMedCrossRef Kuroda R, Usas A, Kubo S et al (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54:433–442PubMedCrossRef
44.
45.
Zurück zum Zitat Zalzman M, Anker-Kitai L, Efrat S (2005) Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes 54:2568–2575PubMedCrossRef Zalzman M, Anker-Kitai L, Efrat S (2005) Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes 54:2568–2575PubMedCrossRef
46.
Zurück zum Zitat Raghunath J, Salacinski HJ, Sales KM et al (2005) Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol 16:503–509PubMedCrossRef Raghunath J, Salacinski HJ, Sales KM et al (2005) Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol 16:503–509PubMedCrossRef
47.
Zurück zum Zitat Riha GM, Lin PH, Lumsden AB, Yao Q (2005) Review: application of stem cells for vascular tissue engineering. Tissue Eng 11:1535–1552PubMedCrossRef Riha GM, Lin PH, Lumsden AB, Yao Q (2005) Review: application of stem cells for vascular tissue engineering. Tissue Eng 11:1535–1552PubMedCrossRef
48.
Zurück zum Zitat Risbud MV, Shapiro IM (2005) Stem cells in craniofacial and dental tissue engineering. Orthod Craniofac Res 8:54–59PubMed Risbud MV, Shapiro IM (2005) Stem cells in craniofacial and dental tissue engineering. Orthod Craniofac Res 8:54–59PubMed
49.
Zurück zum Zitat Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294PubMedCrossRef Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294PubMedCrossRef
50.
Zurück zum Zitat Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369PubMedCrossRef Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369PubMedCrossRef
51.
Zurück zum Zitat De Coppi P, Bartsch G, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106PubMedCrossRef De Coppi P, Bartsch G, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106PubMedCrossRef
52.
Zurück zum Zitat Miki T, Lehmann T, Cai H et al (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559PubMedCrossRef Miki T, Lehmann T, Cai H et al (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559PubMedCrossRef
53.
Zurück zum Zitat Saxena AK (2005) Tissue engineering: present concepts and strategies. J Indian Assoc Pediatr Surg 10:14–19CrossRef Saxena AK (2005) Tissue engineering: present concepts and strategies. J Indian Assoc Pediatr Surg 10:14–19CrossRef
54.
Zurück zum Zitat Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492PubMedCrossRef Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492PubMedCrossRef
55.
Zurück zum Zitat Boccaccini AR, Blaker JJ (2005) Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2:303–317PubMedCrossRef Boccaccini AR, Blaker JJ (2005) Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2:303–317PubMedCrossRef
56.
Zurück zum Zitat Behonick DJ, Werb Z (2003) A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mech Dev 120:1327–1336PubMedCrossRef Behonick DJ, Werb Z (2003) A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mech Dev 120:1327–1336PubMedCrossRef
57.
Zurück zum Zitat Ma Z, He W, Yong T et al (2005) Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11:1149–1158PubMedCrossRef Ma Z, He W, Yong T et al (2005) Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11:1149–1158PubMedCrossRef
58.
Zurück zum Zitat Rho KS, Jeong L, Lee G et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461PubMedCrossRef Rho KS, Jeong L, Lee G et al (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461PubMedCrossRef
59.
Zurück zum Zitat Ayutsede J, Gandhi M, Sukigara S et al (2006) Carbon nanotube-reinforced Bombyx morisilk nanofibers by the electrospinning process. Biomacromolecules 7:208–224PubMedCrossRef Ayutsede J, Gandhi M, Sukigara S et al (2006) Carbon nanotube-reinforced Bombyx morisilk nanofibers by the electrospinning process. Biomacromolecules 7:208–224PubMedCrossRef
60.
Zurück zum Zitat Stankus JJ, Guan J, Fujimoto K et al (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27:735–744PubMedCrossRef Stankus JJ, Guan J, Fujimoto K et al (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27:735–744PubMedCrossRef
61.
62.
Zurück zum Zitat Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314PubMedCrossRef Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314PubMedCrossRef
63.
Zurück zum Zitat Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRef Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRef
64.
Zurück zum Zitat Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663PubMedCrossRef Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663PubMedCrossRef
65.
Zurück zum Zitat Grayson WL, Zhao F, Izadpanah R et al (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207:331–339PubMedCrossRef Grayson WL, Zhao F, Izadpanah R et al (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207:331–339PubMedCrossRef
66.
Zurück zum Zitat Niklason LE, Gao J, Abbott WM et al (1999) Functional arteries grown in vitro. Science 284:489–493PubMedCrossRef Niklason LE, Gao J, Abbott WM et al (1999) Functional arteries grown in vitro. Science 284:489–493PubMedCrossRef
67.
Zurück zum Zitat Barron V, Lyons E, Stenson-Cox C et al (2003) Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng 31:1017–1030PubMedCrossRef Barron V, Lyons E, Stenson-Cox C et al (2003) Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng 31:1017–1030PubMedCrossRef
68.
Zurück zum Zitat Eschenhagen T, Fink C, Remmers U et al (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart model system. FASEB J 11:683–694PubMed Eschenhagen T, Fink C, Remmers U et al (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart model system. FASEB J 11:683–694PubMed
69.
Zurück zum Zitat Carrier RL, Papadaki M, Rupnick M et al (1999) Cardiac tissue engineering: cell seeding, cultivation parameters and tissue construct characterization. Biotechnol Bioeng 64:580–589PubMedCrossRef Carrier RL, Papadaki M, Rupnick M et al (1999) Cardiac tissue engineering: cell seeding, cultivation parameters and tissue construct characterization. Biotechnol Bioeng 64:580–589PubMedCrossRef
70.
Zurück zum Zitat Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infracted rat hearts. Nat Med 12:452–458PubMedCrossRef Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infracted rat hearts. Nat Med 12:452–458PubMedCrossRef
71.
Zurück zum Zitat Guo XM, Zhao YS, Chang HX et al (2006) Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113:2229–2237PubMedCrossRef Guo XM, Zhao YS, Chang HX et al (2006) Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation 113:2229–2237PubMedCrossRef
72.
Zurück zum Zitat Shimizu T, Yamato M, Isoi Y et al (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Cir Res 90:e40–e48CrossRef Shimizu T, Yamato M, Isoi Y et al (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Cir Res 90:e40–e48CrossRef
73.
Zurück zum Zitat Guo Y, Zhang XZ, Wei Y et al (2009) Culturing of ventricle cells at high density and construction of engineered cardiac cell sheets without scaffold. Int Heart J 50:653–662PubMedCrossRef Guo Y, Zhang XZ, Wei Y et al (2009) Culturing of ventricle cells at high density and construction of engineered cardiac cell sheets without scaffold. Int Heart J 50:653–662PubMedCrossRef
74.
Zurück zum Zitat Shinoka T, Ma PX, Shum-Tim D et al (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94(Suppl 9):II164–II168 Shinoka T, Ma PX, Shum-Tim D et al (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94(Suppl 9):II164–II168
75.
Zurück zum Zitat Schnell AM, Hoerstrup SP, Zund G et al (2001) Optimal cell source for cardiovascular tissue engineering: venous vs. aortic human myofibroblasts. Thorac Cardiovasc Surg 49:221–225PubMedCrossRef Schnell AM, Hoerstrup SP, Zund G et al (2001) Optimal cell source for cardiovascular tissue engineering: venous vs. aortic human myofibroblasts. Thorac Cardiovasc Surg 49:221–225PubMedCrossRef
76.
Zurück zum Zitat Sutherland FWH, Perry TE, Nasseri BA et al (2002) Advances in the mechanisms of cell delivery to cardiovascular scaffolds: comparison of two rotating cell culture systems. ASAIO J 48:346–349PubMedCrossRef Sutherland FWH, Perry TE, Nasseri BA et al (2002) Advances in the mechanisms of cell delivery to cardiovascular scaffolds: comparison of two rotating cell culture systems. ASAIO J 48:346–349PubMedCrossRef
77.
Zurück zum Zitat Engelmayr GC, Hildebrand DK, Sutherland FW et al (2003) A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart-valve biomaterials. Biomaterials 24:2523–2532PubMedCrossRef Engelmayr GC, Hildebrand DK, Sutherland FW et al (2003) A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart-valve biomaterials. Biomaterials 24:2523–2532PubMedCrossRef
78.
Zurück zum Zitat Dohmen PM, Lembcke A, Hotz H et al (2002) Ross operation with a tissue-engineered heart valve. Ann Thorac Surg 74:1438–1442PubMedCrossRef Dohmen PM, Lembcke A, Hotz H et al (2002) Ross operation with a tissue-engineered heart valve. Ann Thorac Surg 74:1438–1442PubMedCrossRef
79.
Zurück zum Zitat Dohmen PM, Lembcke A, Holinski S et al (2007) Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 84:729–736PubMedCrossRef Dohmen PM, Lembcke A, Holinski S et al (2007) Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 84:729–736PubMedCrossRef
80.
Zurück zum Zitat Shinoka T, Breuer C (2008) Tissue-engineered blood vessels in pediatric cardiac surgery. Yale J Biol Med 81:161–166PubMed Shinoka T, Breuer C (2008) Tissue-engineered blood vessels in pediatric cardiac surgery. Yale J Biol Med 81:161–166PubMed
81.
Zurück zum Zitat Narushima M, Kobayashi N, Okitsu T et al (2005) A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23:1274–1282PubMedCrossRef Narushima M, Kobayashi N, Okitsu T et al (2005) A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23:1274–1282PubMedCrossRef
82.
Zurück zum Zitat Yanagita M, Nakayama K, Takeuchi T (1992) Processing of mutated proinsulin with tetrabasic cleavage sites to bioactive insulin in the nonendocrine cell line, COS-7. FEBS Lett 311:55–59PubMedCrossRef Yanagita M, Nakayama K, Takeuchi T (1992) Processing of mutated proinsulin with tetrabasic cleavage sites to bioactive insulin in the nonendocrine cell line, COS-7. FEBS Lett 311:55–59PubMedCrossRef
84.
Zurück zum Zitat Jun HS, Yoon JW (2005) Approaches for the cure of type 1 diabetes by cellular and gene therapy. Curr Gene Ther 5:249–262PubMedCrossRef Jun HS, Yoon JW (2005) Approaches for the cure of type 1 diabetes by cellular and gene therapy. Curr Gene Ther 5:249–262PubMedCrossRef
85.
Zurück zum Zitat Mikos A, Papadaki M, Kouvroukoglou S et al (1994) Mini-review: islet transplantation to create a bioartificial pancreas. Biotechnol Bioeng 43:673–677PubMedCrossRef Mikos A, Papadaki M, Kouvroukoglou S et al (1994) Mini-review: islet transplantation to create a bioartificial pancreas. Biotechnol Bioeng 43:673–677PubMedCrossRef
86.
Zurück zum Zitat Soon-Shiong P, Heintz RE, Merideth N et al (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951PubMedCrossRef Soon-Shiong P, Heintz RE, Merideth N et al (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951PubMedCrossRef
87.
Zurück zum Zitat Calafiore R, Basta G, Luca G et al (2006) Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 29:137–138PubMedCrossRef Calafiore R, Basta G, Luca G et al (2006) Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 29:137–138PubMedCrossRef
88.
Zurück zum Zitat Tuch BE, Keogh GW, Williams LJ et al (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32:1887–1889PubMedCrossRef Tuch BE, Keogh GW, Williams LJ et al (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32:1887–1889PubMedCrossRef
89.
Zurück zum Zitat Takimoto Y, Okumura N, Nakamura T et al (1993) Long-term follow-up of the experimental replacement of the esophagus with a collagen–silicone composite tube. ASAIO J 39:M736–M739PubMedCrossRef Takimoto Y, Okumura N, Nakamura T et al (1993) Long-term follow-up of the experimental replacement of the esophagus with a collagen–silicone composite tube. ASAIO J 39:M736–M739PubMedCrossRef
90.
Zurück zum Zitat Yamamoto Y, Nakamura T, Shimizu Y et al (1999) Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube. J Thorac Cardiovasc Surg 118:276–286PubMedCrossRef Yamamoto Y, Nakamura T, Shimizu Y et al (1999) Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube. J Thorac Cardiovasc Surg 118:276–286PubMedCrossRef
91.
Zurück zum Zitat Yamamoto Y, Nakamura T, Shimizu Y et al (2000) Intrathoracic esophageal replacement with a collagen sponge–silicone double-layer tube: evaluation of omental-pedicle wrapping and prolonged placement of an inner stent. ASAIO J 46:734–739PubMedCrossRef Yamamoto Y, Nakamura T, Shimizu Y et al (2000) Intrathoracic esophageal replacement with a collagen sponge–silicone double-layer tube: evaluation of omental-pedicle wrapping and prolonged placement of an inner stent. ASAIO J 46:734–739PubMedCrossRef
92.
Zurück zum Zitat Hori Y, Nakamura T, Kimura D et al (2003) Effect of basic fibroblast growth factor on vascularization in esophagus tissue engineering. Int J Artif Organs 26:241–244PubMed Hori Y, Nakamura T, Kimura D et al (2003) Effect of basic fibroblast growth factor on vascularization in esophagus tissue engineering. Int J Artif Organs 26:241–244PubMed
93.
Zurück zum Zitat Sato M, Ando N, Ozawa S et al (1994) An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen. ASAIO J 40:M389–M392PubMedCrossRef Sato M, Ando N, Ozawa S et al (1994) An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen. ASAIO J 40:M389–M392PubMedCrossRef
94.
Zurück zum Zitat Hayashi K, Ando N, Ozawa S et al (2004) A neo-esophagus reconstructed by cultured human esophageal epithelial cells, smooth muscle cells, fibroblasts, and collagen. ASAIO J 50:261–266PubMedCrossRef Hayashi K, Ando N, Ozawa S et al (2004) A neo-esophagus reconstructed by cultured human esophageal epithelial cells, smooth muscle cells, fibroblasts, and collagen. ASAIO J 50:261–266PubMedCrossRef
95.
Zurück zum Zitat Badylak S, Meurling S, Chen M et al (2000) Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 35:1097–1103PubMedCrossRef Badylak S, Meurling S, Chen M et al (2000) Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 35:1097–1103PubMedCrossRef
96.
Zurück zum Zitat Badylak SF, Vorp DA, Spievack AR et al (2005) Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 128:87–97PubMed Badylak SF, Vorp DA, Spievack AR et al (2005) Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 128:87–97PubMed
97.
Zurück zum Zitat Doede T, Bondartschuk M, Joerck C et al (2009) Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs 33:328–333PubMedCrossRef Doede T, Bondartschuk M, Joerck C et al (2009) Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs 33:328–333PubMedCrossRef
98.
Zurück zum Zitat Nakase Y, Nakamura T, Kin S et al (2008) Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg 136:850–859PubMedCrossRef Nakase Y, Nakamura T, Kin S et al (2008) Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg 136:850–859PubMedCrossRef
99.
Zurück zum Zitat Grikscheit T, Ochoa ER, Srinivasan A et al (2003) Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg 126:537–544PubMedCrossRef Grikscheit T, Ochoa ER, Srinivasan A et al (2003) Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg 126:537–544PubMedCrossRef
100.
Zurück zum Zitat Saxena AK, Ainoedhofer H, Höllwarth ME (2009) Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold. J Pediatr Surg 44:896–901PubMedCrossRef Saxena AK, Ainoedhofer H, Höllwarth ME (2009) Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold. J Pediatr Surg 44:896–901PubMedCrossRef
101.
Zurück zum Zitat Saxena AK, Kofler K, Ainödhofer H et al (2009) Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg 13:1037–1043PubMedCrossRef Saxena AK, Kofler K, Ainödhofer H et al (2009) Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg 13:1037–1043PubMedCrossRef
102.
Zurück zum Zitat Soltysiak P, Saxena AK (2009) Micro-computed tomography for implantation site imaging during in situ oesophagus tissue engineering in a live small animal model. J Tissue Eng Regen Med 3:573–576PubMedCrossRef Soltysiak P, Saxena AK (2009) Micro-computed tomography for implantation site imaging during in situ oesophagus tissue engineering in a live small animal model. J Tissue Eng Regen Med 3:573–576PubMedCrossRef
103.
Zurück zum Zitat Saxena AK, Ainoedhofer H, Höllwarth ME (2010) Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering. Tissue Eng Part C Methods 16:109–114 Saxena AK, Ainoedhofer H, Höllwarth ME (2010) Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering. Tissue Eng Part C Methods 16:109–114
104.
Zurück zum Zitat Kofler K, Ainoedhofer H, Höllwarth ME et al (2010) Fluorescence-activated cell sorting of PCK-26 antigen-positive cells enables selection of ovine esophageal epithelial cells with improved viability on scaffolds for esophagus tissue engineering. Pediatr Surg Int 26:97–104PubMedCrossRef Kofler K, Ainoedhofer H, Höllwarth ME et al (2010) Fluorescence-activated cell sorting of PCK-26 antigen-positive cells enables selection of ovine esophageal epithelial cells with improved viability on scaffolds for esophagus tissue engineering. Pediatr Surg Int 26:97–104PubMedCrossRef
105.
Zurück zum Zitat Saxena AK, Soltysiak P, Ainoedhofer H (2009) Esophagus tissue engineering: In situ generation of vascularized esophageal conduits using the ovine model. Abstracts of the 41st Annual Meeting of the Canadian Association of Pediatric Surgeons, Oct 1–4, Halifax, Nova Scotia, Canada Saxena AK, Soltysiak P, Ainoedhofer H (2009) Esophagus tissue engineering: In situ generation of vascularized esophageal conduits using the ovine model. Abstracts of the 41st Annual Meeting of the Canadian Association of Pediatric Surgeons, Oct 1–4, Halifax, Nova Scotia, Canada
106.
Zurück zum Zitat Vacanti JP, Morse MA, Saltzman WM et al (1998) Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg 23:3–9CrossRef Vacanti JP, Morse MA, Saltzman WM et al (1998) Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg 23:3–9CrossRef
107.
Zurück zum Zitat Patel HR, Tait IS, Evans GS et al (1996) Influence of cell interactions in a novel model of postnatal mucosal regeneration. Gut 38:679–686PubMedCrossRef Patel HR, Tait IS, Evans GS et al (1996) Influence of cell interactions in a novel model of postnatal mucosal regeneration. Gut 38:679–686PubMedCrossRef
108.
Zurück zum Zitat Evans GS, Flint N, Somers AS et al (1992) The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci 101:219–231PubMed Evans GS, Flint N, Somers AS et al (1992) The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci 101:219–231PubMed
109.
Zurück zum Zitat Tait IS, Flint N, Campbell FC et al (1994) Generation of neomucosa in vivo by transplantation of dissociated rat postnatal small-intestinal epithelium. Differentiation 56:91–100PubMed Tait IS, Flint N, Campbell FC et al (1994) Generation of neomucosa in vivo by transplantation of dissociated rat postnatal small-intestinal epithelium. Differentiation 56:91–100PubMed
110.
Zurück zum Zitat Tait IS, Evans GS, Flint N et al (1994) Colonic mucosal replacement by syngeneic small intestinal stem cell transplantation. Am J Surg 167:67–72PubMedCrossRef Tait IS, Evans GS, Flint N et al (1994) Colonic mucosal replacement by syngeneic small intestinal stem cell transplantation. Am J Surg 167:67–72PubMedCrossRef
111.
Zurück zum Zitat Choi RS, Riegler M, Pothoulakis C et al (1998) Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine. J Pediatr Surg 33:991–996PubMedCrossRef Choi RS, Riegler M, Pothoulakis C et al (1998) Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine. J Pediatr Surg 33:991–996PubMedCrossRef
112.
Zurück zum Zitat Kim SS, Kaihara S, Benvenuto MS et al (1999) Effects of anastomosis of tissue engineered neointestine to native small bowel. J Surg Res 87:6–13PubMedCrossRef Kim SS, Kaihara S, Benvenuto MS et al (1999) Effects of anastomosis of tissue engineered neointestine to native small bowel. J Surg Res 87:6–13PubMedCrossRef
113.
Zurück zum Zitat Grikscheit TC, Siddique A, Ochoa ER et al (2004) Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 240:748–754PubMedCrossRef Grikscheit TC, Siddique A, Ochoa ER et al (2004) Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 240:748–754PubMedCrossRef
114.
Zurück zum Zitat Lloyd DA, Ansari TI, Gundabolu P et al (2006) A pilot study investigating a novel subcutaneously implanted precellularized scaffold for tissue engineering of intestinal mucosa. Eur Cell Mater 11:27–33PubMed Lloyd DA, Ansari TI, Gundabolu P et al (2006) A pilot study investigating a novel subcutaneously implanted precellularized scaffold for tissue engineering of intestinal mucosa. Eur Cell Mater 11:27–33PubMed
115.
Zurück zum Zitat Sala FG, Kunisaki SM, Ochoa ER et al (2009) Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res 156:205–212PubMedCrossRef Sala FG, Kunisaki SM, Ochoa ER et al (2009) Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res 156:205–212PubMedCrossRef
116.
Zurück zum Zitat Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912PubMedCrossRef Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912PubMedCrossRef
117.
118.
Zurück zum Zitat Oliver JA, Maarouf O, Cheema FH et al (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804PubMed Oliver JA, Maarouf O, Cheema FH et al (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804PubMed
119.
Zurück zum Zitat Duffield JS, Park KM, Hsiao LL et al (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755PubMedCrossRef Duffield JS, Park KM, Hsiao LL et al (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755PubMedCrossRef
120.
Zurück zum Zitat Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow–derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115:1756–1764PubMedCrossRef Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow–derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115:1756–1764PubMedCrossRef
121.
Zurück zum Zitat Brodie JC, Humes HD (2005) Stem cell approaches for the treatment of renal failure. Pharmacol Rev 57:299–313PubMedCrossRef Brodie JC, Humes HD (2005) Stem cell approaches for the treatment of renal failure. Pharmacol Rev 57:299–313PubMedCrossRef
122.
Zurück zum Zitat Steenhard BM, Isom KS, Cazcarro P et al (2005) Integration of embryonic stem cells in metanephric kidney organ culture. J Am Soc Nephrol 16:1623–1631PubMedCrossRef Steenhard BM, Isom KS, Cazcarro P et al (2005) Integration of embryonic stem cells in metanephric kidney organ culture. J Am Soc Nephrol 16:1623–1631PubMedCrossRef
123.
Zurück zum Zitat Wang PC, Takezawa T (2005) Reconstruction of renal glomerular tissue using collagen vitrigel scaffold. J Biosci Bioeng 99:529–540PubMedCrossRef Wang PC, Takezawa T (2005) Reconstruction of renal glomerular tissue using collagen vitrigel scaffold. J Biosci Bioeng 99:529–540PubMedCrossRef
124.
Zurück zum Zitat Joraku A, Stern KA, Atala A et al (2009) In vitro generation of three-dimensional renal structures. Methods 47:129–133PubMedCrossRef Joraku A, Stern KA, Atala A et al (2009) In vitro generation of three-dimensional renal structures. Methods 47:129–133PubMedCrossRef
125.
Zurück zum Zitat Roessger A, Denk L, Minuth WW (2009) Potential of stem/progenitor cell cultures within polyester fleeces to regenerate renal tubules. Biomaterials 30:3723–3732PubMedCrossRef Roessger A, Denk L, Minuth WW (2009) Potential of stem/progenitor cell cultures within polyester fleeces to regenerate renal tubules. Biomaterials 30:3723–3732PubMedCrossRef
126.
Zurück zum Zitat Kropp BP, Cheng EY, Lin HK et al (2004) Reliable and reproducible bladder regeneration using unseeded distal small intestinal ubmucosa. J Urol 172:1710–1713PubMedCrossRef Kropp BP, Cheng EY, Lin HK et al (2004) Reliable and reproducible bladder regeneration using unseeded distal small intestinal ubmucosa. J Urol 172:1710–1713PubMedCrossRef
127.
Zurück zum Zitat Yoo JJ, Meng J, Oberpenning F et al (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51:221–225PubMedCrossRef Yoo JJ, Meng J, Oberpenning F et al (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51:221–225PubMedCrossRef
128.
Zurück zum Zitat Probst M, Dahiya R, Carrier S et al (1997) Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol 79:505–515PubMed Probst M, Dahiya R, Carrier S et al (1997) Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol 79:505–515PubMed
129.
Zurück zum Zitat Portis AJ, Elbahnasy AM, Shalhav AL et al (2000) Laparoscopic augmentation cystoplasty with different biodegradable grafts in an animal model. J Urol 164:1405–1411PubMedCrossRef Portis AJ, Elbahnasy AM, Shalhav AL et al (2000) Laparoscopic augmentation cystoplasty with different biodegradable grafts in an animal model. J Urol 164:1405–1411PubMedCrossRef
130.
Zurück zum Zitat Landman J, Olweny E, Sundaram CP et al (2004) Laparoscopic mid-sagittal hemicystectomy and bladder reconstruction with small intestinal submucosa and reimplantation of ureter into small intestinal submucosa: 1-year follow-up. J Urol 171:2450–2455PubMedCrossRef Landman J, Olweny E, Sundaram CP et al (2004) Laparoscopic mid-sagittal hemicystectomy and bladder reconstruction with small intestinal submucosa and reimplantation of ureter into small intestinal submucosa: 1-year follow-up. J Urol 171:2450–2455PubMedCrossRef
131.
Zurück zum Zitat Oberpenning FO, Meng J, Yoo J et al (1999) De novo reconstitution of a functional urinary bladder by tissue engineering. Nat Biotechnol 17:149–155PubMedCrossRef Oberpenning FO, Meng J, Yoo J et al (1999) De novo reconstitution of a functional urinary bladder by tissue engineering. Nat Biotechnol 17:149–155PubMedCrossRef
132.
Zurück zum Zitat Atala A, Bauer SB, Soker S et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246PubMedCrossRef Atala A, Bauer SB, Soker S et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246PubMedCrossRef
133.
Zurück zum Zitat Soler R, Fullhase C, Atala A et al (2009) Regenerative medicine strategies for treatment of neurogenic bladder. Therapy 6:177–184PubMedCrossRef Soler R, Fullhase C, Atala A et al (2009) Regenerative medicine strategies for treatment of neurogenic bladder. Therapy 6:177–184PubMedCrossRef
134.
Zurück zum Zitat Guillouzo A (1998) Liver cell models in in vitro toxicology. Environ Health Perspect 106:511–532PubMedCrossRef Guillouzo A (1998) Liver cell models in in vitro toxicology. Environ Health Perspect 106:511–532PubMedCrossRef
135.
Zurück zum Zitat Mitaka T (1998) The current status of primary hepatocyte culture. Int J Exp Pathol 79:393–409PubMedCrossRef Mitaka T (1998) The current status of primary hepatocyte culture. Int J Exp Pathol 79:393–409PubMedCrossRef
136.
Zurück zum Zitat Ranucci CS, Kumar A, Batra SP et al (2000) Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2D and 3D cellular morphogenesis. Biomaterials 21:783–793PubMedCrossRef Ranucci CS, Kumar A, Batra SP et al (2000) Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2D and 3D cellular morphogenesis. Biomaterials 21:783–793PubMedCrossRef
137.
Zurück zum Zitat Seo SJ, Choi YJ, Akaike T et al (2006) Alginate/galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. Tissue Eng 12:33–44PubMedCrossRef Seo SJ, Choi YJ, Akaike T et al (2006) Alginate/galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. Tissue Eng 12:33–44PubMedCrossRef
138.
Zurück zum Zitat Tan W, Desai TA (2003) Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Eng 9:255–267PubMedCrossRef Tan W, Desai TA (2003) Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Eng 9:255–267PubMedCrossRef
139.
Zurück zum Zitat Wang X, Yan Y, Pan Y et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90PubMedCrossRef Wang X, Yan Y, Pan Y et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90PubMedCrossRef
140.
Zurück zum Zitat Kaihara S, Borenstein J, Koka R et al (2000) Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng 6:105–117PubMedCrossRef Kaihara S, Borenstein J, Koka R et al (2000) Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng 6:105–117PubMedCrossRef
141.
Zurück zum Zitat Allen JW, Khetani SR, Bhatia SN (2005) In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 84:110–119PubMedCrossRef Allen JW, Khetani SR, Bhatia SN (2005) In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 84:110–119PubMedCrossRef
142.
Zurück zum Zitat Gebhardt R, Hengstler JG, Muller D et al (2003) New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab Rev 35:145–213PubMedCrossRef Gebhardt R, Hengstler JG, Muller D et al (2003) New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab Rev 35:145–213PubMedCrossRef
143.
Zurück zum Zitat Hong KU, Reynolds SD, Giangreco A et al (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681PubMed Hong KU, Reynolds SD, Giangreco A et al (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681PubMed
144.
Zurück zum Zitat Kim CF, Jackson EL, Woolfenden AE (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRef Kim CF, Jackson EL, Woolfenden AE (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835PubMedCrossRef
145.
Zurück zum Zitat Coraux C, Nawrocki-Raby B, Hinnrasky J et al (2005) Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol 32:87–92PubMedCrossRef Coraux C, Nawrocki-Raby B, Hinnrasky J et al (2005) Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol 32:87–92PubMedCrossRef
146.
Zurück zum Zitat Van Vranken BE, Romanska HM, Polak JM (2005) Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng 11:1177–1187PubMedCrossRef Van Vranken BE, Romanska HM, Polak JM (2005) Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng 11:1177–1187PubMedCrossRef
147.
Zurück zum Zitat Saxena AK, Marler J, Benvenuto M (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–532PubMedCrossRef Saxena AK, Marler J, Benvenuto M (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–532PubMedCrossRef
148.
Zurück zum Zitat Saxena AK, Willital GH, Vacanti JP (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11:275–281PubMed Saxena AK, Willital GH, Vacanti JP (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11:275–281PubMed
149.
Zurück zum Zitat Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647PubMedCrossRef Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647PubMedCrossRef
150.
Zurück zum Zitat Costa KD, Lee EJ, Holmes JW (2003) Creating alignment and anisotropy in engineered heart tissue: Role of boundary conditions in a model three-dimensional culture system. Tissue Eng 9:567–577PubMedCrossRef Costa KD, Lee EJ, Holmes JW (2003) Creating alignment and anisotropy in engineered heart tissue: Role of boundary conditions in a model three-dimensional culture system. Tissue Eng 9:567–577PubMedCrossRef
151.
Zurück zum Zitat Girton TS, Barocas VH, Tranquillo RT (2002) Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J Biomech Eng 124:568–575PubMedCrossRef Girton TS, Barocas VH, Tranquillo RT (2002) Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J Biomech Eng 124:568–575PubMedCrossRef
152.
Zurück zum Zitat Taylor NA, Wilkinson JG (1986) Exercise-induced skeletal muscle growth. Hypertrophy or hyperplasia? Sports Med 3:190–200PubMedCrossRef Taylor NA, Wilkinson JG (1986) Exercise-induced skeletal muscle growth. Hypertrophy or hyperplasia? Sports Med 3:190–200PubMedCrossRef
153.
Zurück zum Zitat Vandenburgh HH, Karlisch P (1989) Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev Biol 25:607–616PubMedCrossRef Vandenburgh HH, Karlisch P (1989) Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev Biol 25:607–616PubMedCrossRef
154.
Zurück zum Zitat Cheema U, Yang SY, Mudera V (2003) 3-D in vitro model of early skeletal muscle development. Cell Motil Cytoskeleton 54:226–236PubMedCrossRef Cheema U, Yang SY, Mudera V (2003) 3-D in vitro model of early skeletal muscle development. Cell Motil Cytoskeleton 54:226–236PubMedCrossRef
155.
Zurück zum Zitat Tatsumi R, Sheehan SM, Iwasaki H (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267:107–114PubMedCrossRef Tatsumi R, Sheehan SM, Iwasaki H (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267:107–114PubMedCrossRef
156.
Zurück zum Zitat Darr KC, Schultz E (1987) Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63:1816–1821PubMed Darr KC, Schultz E (1987) Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63:1816–1821PubMed
157.
Zurück zum Zitat Kook SH, Lee HJ, Chung WT et al (2008) Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol Cells 25(4):479–486PubMed Kook SH, Lee HJ, Chung WT et al (2008) Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol Cells 25(4):479–486PubMed
158.
Zurück zum Zitat Otis JS, Burkholder TJ, Pavlath GK (2005) Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 310:417–425PubMedCrossRef Otis JS, Burkholder TJ, Pavlath GK (2005) Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 310:417–425PubMedCrossRef
159.
Zurück zum Zitat Fujita H, Nedachi T, Kanzaki M (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 313:1853–1865PubMedCrossRef Fujita H, Nedachi T, Kanzaki M (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 313:1853–1865PubMedCrossRef
160.
Zurück zum Zitat De Deyne PG (2000) Formation of sarcomeres in developing myotubes: Role of mechanical stretch and contractile activation. Am J Physiol Cell Physiol 279:C1801–C1811PubMed De Deyne PG (2000) Formation of sarcomeres in developing myotubes: Role of mechanical stretch and contractile activation. Am J Physiol Cell Physiol 279:C1801–C1811PubMed
161.
Zurück zum Zitat Larkin LM, Van der Meulen JH, Dennis RG (2006) Functional evaluation of nerve-skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 42:75–82PubMedCrossRef Larkin LM, Van der Meulen JH, Dennis RG (2006) Functional evaluation of nerve-skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 42:75–82PubMedCrossRef
162.
Zurück zum Zitat Dhawan V, Lytle IF, Dow DE (2007) Neurotization improves contractile forces of tissue-engineered skeletal muscle. Tissue Eng 13:2813–2821PubMedCrossRef Dhawan V, Lytle IF, Dow DE (2007) Neurotization improves contractile forces of tissue-engineered skeletal muscle. Tissue Eng 13:2813–2821PubMedCrossRef
Metadaten
Titel
Tissue engineering and regenerative medicine research perspectives for pediatric surgery
verfasst von
Amulya K. Saxena
Publikationsdatum
01.06.2010
Verlag
Springer-Verlag
Erschienen in
Pediatric Surgery International / Ausgabe 6/2010
Print ISSN: 0179-0358
Elektronische ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-010-2591-8

Weitere Artikel der Ausgabe 6/2010

Pediatric Surgery International 6/2010 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.