Skip to main content
Erschienen in: Pediatric Surgery International 9/2015

01.09.2015 | Review Article

Anorectal malformation: the etiological factors

verfasst von: Chen Wang, Long Li, Wei Cheng

Erschienen in: Pediatric Surgery International | Ausgabe 9/2015

Einloggen, um Zugang zu erhalten

Abstract

Anorectal malformation (ARM) is a congenital anomaly commonly encountered in pediatric surgery practice. Although surgical procedures correct the anatomical anomalies, the post-operative bowel function is not universally satisfactory. The etiology of ARM remains unclear. In this review, we summarize the current understanding of the genetic and epigenetic factors contributing to the pathogenesis of ARM, based on published animal models, human genetics and epidemiological researches. Appreciation of these factors may be helpful in the management of ARM in the future.
Literatur
1.
Zurück zum Zitat Endo M, Hayashi A, Ishihara M et al (1999) Analysis of 1,992 patients with anorectal malformations over the past two decades in Japan. Steering Committee of Japanese Study Group of Anorectal Anomalies. J Pediatr Surg 34(3):435–441PubMed Endo M, Hayashi A, Ishihara M et al (1999) Analysis of 1,992 patients with anorectal malformations over the past two decades in Japan. Steering Committee of Japanese Study Group of Anorectal Anomalies. J Pediatr Surg 34(3):435–441PubMed
2.
Zurück zum Zitat Stoll C, Alembik Y, Dott B et al (2007) Associated malformations in patients with anorectal anomalies. Eur J Med Genet 50(4):281–290PubMed Stoll C, Alembik Y, Dott B et al (2007) Associated malformations in patients with anorectal anomalies. Eur J Med Genet 50(4):281–290PubMed
3.
Zurück zum Zitat Nah SA, Ong CC, Lakshmi NK et al (2012) Anomalies associated with anorectal malformations according to the Krickenbeck anatomic classification. J Pediatr Surg 47(12):2273–2278PubMed Nah SA, Ong CC, Lakshmi NK et al (2012) Anomalies associated with anorectal malformations according to the Krickenbeck anatomic classification. J Pediatr Surg 47(12):2273–2278PubMed
4.
Zurück zum Zitat Mirza B, Ijaz L, Saleem M et al (2011) Anorectal malformations in neonates. Afr J Paediatr Surg 8(2):151–154PubMed Mirza B, Ijaz L, Saleem M et al (2011) Anorectal malformations in neonates. Afr J Paediatr Surg 8(2):151–154PubMed
5.
Zurück zum Zitat Stoll C, Alembik Y, Roth MP et al (1997) Risk factors in congenital anal atresias. Ann Genet 40(4):197–204PubMed Stoll C, Alembik Y, Roth MP et al (1997) Risk factors in congenital anal atresias. Ann Genet 40(4):197–204PubMed
6.
Zurück zum Zitat Chen QJ, Jia HM, Zhang SW et al (2009) Apoptosis during the development of pelvic floor muscle in anorectal malformation rats. J Pediatr Surg 44(10):1884–1891PubMed Chen QJ, Jia HM, Zhang SW et al (2009) Apoptosis during the development of pelvic floor muscle in anorectal malformation rats. J Pediatr Surg 44(10):1884–1891PubMed
7.
Zurück zum Zitat Guan K, Li H, Fan Y et al (2009) Defective development of sensory neurons innervating the levator ani muscle in fetal rats with anorectal malformation. Birth Defects Res A Clin Mol Teratol 85(7):583–587PubMed Guan K, Li H, Fan Y et al (2009) Defective development of sensory neurons innervating the levator ani muscle in fetal rats with anorectal malformation. Birth Defects Res A Clin Mol Teratol 85(7):583–587PubMed
9.
Zurück zum Zitat Marcelis C, de Blaauw I, Brunner H (2011) Chromosomal anomalies in the etiology of anorectal malformations: a review. Am J Med Genet A 155A(11):2692–2704PubMed Marcelis C, de Blaauw I, Brunner H (2011) Chromosomal anomalies in the etiology of anorectal malformations: a review. Am J Med Genet A 155A(11):2692–2704PubMed
10.
Zurück zum Zitat Belloni E, Martucciello G, Verderio D et al (2000) Involvement of the HLXB9 homeobox gene in Currarino syndrome. Am J Hum Genet 66(1):312–319PubMedCentralPubMed Belloni E, Martucciello G, Verderio D et al (2000) Involvement of the HLXB9 homeobox gene in Currarino syndrome. Am J Hum Genet 66(1):312–319PubMedCentralPubMed
11.
Zurück zum Zitat Lynch SA, Wang Y, Strachan T et al (2000) Autosomal dominant sacral agenesis: Currarino syndrome. J Med Genet 37(8):561–566PubMedCentralPubMed Lynch SA, Wang Y, Strachan T et al (2000) Autosomal dominant sacral agenesis: Currarino syndrome. J Med Genet 37(8):561–566PubMedCentralPubMed
12.
Zurück zum Zitat Marles SL, Greenberg CR, Persaud TV et al (1992) New familial syndrome of unilateral upper eyelid coloboma, aberrant anterior hairline pattern, and anal anomalies in Manitoba Indians. Am J Med Genet 42(6):793–799PubMed Marles SL, Greenberg CR, Persaud TV et al (1992) New familial syndrome of unilateral upper eyelid coloboma, aberrant anterior hairline pattern, and anal anomalies in Manitoba Indians. Am J Med Genet 42(6):793–799PubMed
13.
Zurück zum Zitat Slavotinek AM, Baranzini SE, Schanze D et al (2011) Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. J Med Genet 48(6):375–382PubMedCentralPubMed Slavotinek AM, Baranzini SE, Schanze D et al (2011) Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. J Med Genet 48(6):375–382PubMedCentralPubMed
14.
Zurück zum Zitat Carmi R, Abeliovich D, Bar-Ziv J et al (1980) Malformation syndrome associated with small extra chromosome. Am J Med Genet 5(1):101–107PubMed Carmi R, Abeliovich D, Bar-Ziv J et al (1980) Malformation syndrome associated with small extra chromosome. Am J Med Genet 5(1):101–107PubMed
15.
Zurück zum Zitat Budarf ML, McDermid HE, Sellinger B et al (1991) Isolation and regional localization of 35 unique anonymous DNA markers for human chromosome 22. Genomics 10(4):996–1002PubMed Budarf ML, McDermid HE, Sellinger B et al (1991) Isolation and regional localization of 35 unique anonymous DNA markers for human chromosome 22. Genomics 10(4):996–1002PubMed
16.
Zurück zum Zitat Robin NH, Feldman GJ, Aronson AL et al (1995) Opitz syndrome is genetically heterogeneous, with one locus on Xp22, and a second locus on 22q11.2. Nat Genet 11(4):459–461PubMed Robin NH, Feldman GJ, Aronson AL et al (1995) Opitz syndrome is genetically heterogeneous, with one locus on Xp22, and a second locus on 22q11.2. Nat Genet 11(4):459–461PubMed
17.
Zurück zum Zitat Brooks JK, Leonard CO, Zawadzki JK et al (1998) Pituitary macroadenoma and cranial osteoma in a manifesting heterozygote with the Opitz G/BBB syndrome. Am J Med Genet 80(3):291–293PubMed Brooks JK, Leonard CO, Zawadzki JK et al (1998) Pituitary macroadenoma and cranial osteoma in a manifesting heterozygote with the Opitz G/BBB syndrome. Am J Med Genet 80(3):291–293PubMed
18.
Zurück zum Zitat Robin NH, Opitz JM, Muenke M (1996) Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q, and a review of the literature. Am J Med Genet 62(3):305–317PubMed Robin NH, Opitz JM, Muenke M (1996) Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q, and a review of the literature. Am J Med Genet 62(3):305–317PubMed
19.
Zurück zum Zitat Hall JG, Pallister PD, Clarren SK et al (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly–a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7(1):47–74PubMed Hall JG, Pallister PD, Clarren SK et al (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly–a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7(1):47–74PubMed
20.
Zurück zum Zitat Kang S, Allen J, Graham JJ et al (1997) Linkage mapping and phenotypic analysis of autosomal dominant Pallister-Hall syndrome. J Med Genet 34(6):441–446PubMedCentralPubMed Kang S, Allen J, Graham JJ et al (1997) Linkage mapping and phenotypic analysis of autosomal dominant Pallister-Hall syndrome. J Med Genet 34(6):441–446PubMedCentralPubMed
21.
Zurück zum Zitat Van Maldergem L, Siitonen HA (2006) Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43(2):148–152PubMedCentralPubMed Van Maldergem L, Siitonen HA (2006) Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43(2):148–152PubMedCentralPubMed
22.
Zurück zum Zitat Pelias MZ, Superneau DW, Thurmon TF (1981) Brief clinical report: a sixth report (eighth case) of craniosynostosis-radial aplasia (Baller-Gerold) syndrome. Am J Med Genet 10(2):133–139PubMed Pelias MZ, Superneau DW, Thurmon TF (1981) Brief clinical report: a sixth report (eighth case) of craniosynostosis-radial aplasia (Baller-Gerold) syndrome. Am J Med Genet 10(2):133–139PubMed
23.
Zurück zum Zitat Arron JR, Winslow MM, Polleri A et al (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441(7093):595–600PubMed Arron JR, Winslow MM, Polleri A et al (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441(7093):595–600PubMed
24.
Zurück zum Zitat Risheg H, Graham JJ, Clark RD et al (2007) A recurrent mutation in MED12 leading to R961W causes Opitz-Kaveggia syndrome. Nat Genet 39(4):451–453PubMed Risheg H, Graham JJ, Clark RD et al (2007) A recurrent mutation in MED12 leading to R961W causes Opitz-Kaveggia syndrome. Nat Genet 39(4):451–453PubMed
25.
Zurück zum Zitat El-Hattab AW, Skorupski JC, Hsieh MH et al (2010) OEIS complex associated with chromosome 1p36 deletion: a case report and review. Am J Med Genet A 152A(2):504–511PubMed El-Hattab AW, Skorupski JC, Hsieh MH et al (2010) OEIS complex associated with chromosome 1p36 deletion: a case report and review. Am J Med Genet A 152A(2):504–511PubMed
26.
Zurück zum Zitat Torres R, Levitt MA, Tovilla JM et al (1998) Anorectal malformations and Down’s syndrome. J Pediatr Surg 33(2):194–197PubMed Torres R, Levitt MA, Tovilla JM et al (1998) Anorectal malformations and Down’s syndrome. J Pediatr Surg 33(2):194–197PubMed
27.
Zurück zum Zitat Lynch SA, Bond PM, Copp AJ et al (1995) A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nat Genet 11(1):93–95PubMed Lynch SA, Bond PM, Copp AJ et al (1995) A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nat Genet 11(1):93–95PubMed
28.
Zurück zum Zitat Currarino G, Coln D, Votteler T (1981) Triad of anorectal, sacral, and presacral anomalies. Am J Roentgen 137:395–398 Currarino G, Coln D, Votteler T (1981) Triad of anorectal, sacral, and presacral anomalies. Am J Roentgen 137:395–398
29.
Zurück zum Zitat Ross AJ, Ruiz-Perez V, Wang Y et al (1998) A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nature Genet 20:358–361PubMed Ross AJ, Ruiz-Perez V, Wang Y et al (1998) A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nature Genet 20:358–361PubMed
30.
Zurück zum Zitat Hagan DM, Ross AJ, Strachan T et al (2000) Mutation analysis and embryonic expression of the HLXB9 Currarino syndrome gene. Am J Hum Genet 66:1504–1515 (0. Note: Erratum: Am J Hum Genet 67: 769 only, 2000) Hagan DM, Ross AJ, Strachan T et al (2000) Mutation analysis and embryonic expression of the HLXB9 Currarino syndrome gene. Am J Hum Genet 66:1504–1515 (0. Note: Erratum: Am J Hum Genet 67: 769 only, 2000)
31.
Zurück zum Zitat Urioste M, Garcia-Andrade MC, Valle L et al (2004) Malignant degeneration of presacral teratoma in the Currarino anomaly. Am J Med Genet A 128A(3):299–304PubMed Urioste M, Garcia-Andrade MC, Valle L et al (2004) Malignant degeneration of presacral teratoma in the Currarino anomaly. Am J Med Genet A 128A(3):299–304PubMed
32.
Zurück zum Zitat Garcia-Barcelo MM, Lui VC, So MT, Miao X et al (2009) MNX1 (HLXB9) mutations in Currarino patients. J Pediatr Surg 44(10):1892–1898PubMed Garcia-Barcelo MM, Lui VC, So MT, Miao X et al (2009) MNX1 (HLXB9) mutations in Currarino patients. J Pediatr Surg 44(10):1892–1898PubMed
33.
Zurück zum Zitat Harrison KA, Thaler J, Pfaff SL et al (1999) Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 23(1):71–75PubMed Harrison KA, Thaler J, Pfaff SL et al (1999) Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 23(1):71–75PubMed
34.
Zurück zum Zitat Townes PL, Brocks ER (1972) Hereditary syndrome of imperforate anus with hand, foot, and ear anomalies. J Pediat 81:321–326PubMed Townes PL, Brocks ER (1972) Hereditary syndrome of imperforate anus with hand, foot, and ear anomalies. J Pediat 81:321–326PubMed
35.
Zurück zum Zitat Kurnit DM, Steele MW, Pinsky L et al (1978) Autosomal dominant transmission of a syndrome of anal, ear, renal, and radial congenital malformations. J. Pediat. 93:270–273PubMed Kurnit DM, Steele MW, Pinsky L et al (1978) Autosomal dominant transmission of a syndrome of anal, ear, renal, and radial congenital malformations. J. Pediat. 93:270–273PubMed
36.
Zurück zum Zitat Kohlhase J, Wischermann A, Reichenbach H et al (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18(1):81–83PubMed Kohlhase J, Wischermann A, Reichenbach H et al (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18(1):81–83PubMed
37.
Zurück zum Zitat Engels S, Kohlhase J, McGaughran J (2000) A SALL1 mutation causes a branchio-oto-renal syndrome-like phenotype. J Med Genet 37(6):458–460PubMedCentralPubMed Engels S, Kohlhase J, McGaughran J (2000) A SALL1 mutation causes a branchio-oto-renal syndrome-like phenotype. J Med Genet 37(6):458–460PubMedCentralPubMed
38.
Zurück zum Zitat Kosaki R, Fujimaru R, Samejima H et al (2007) Wide phenotypic variations within a family with SALL1 mutations: isolated external ear abnormalities to Goldenhar syndrome. Am J Med Genet A 143A(10):1087–1090PubMed Kosaki R, Fujimaru R, Samejima H et al (2007) Wide phenotypic variations within a family with SALL1 mutations: isolated external ear abnormalities to Goldenhar syndrome. Am J Med Genet A 143A(10):1087–1090PubMed
39.
Zurück zum Zitat Sudo Y, Numakura C, Abe A et al (2010) Phenotypic variability in a family with Townes-Brocks syndrome. J Hum Genet 55(8):550–551PubMed Sudo Y, Numakura C, Abe A et al (2010) Phenotypic variability in a family with Townes-Brocks syndrome. J Hum Genet 55(8):550–551PubMed
40.
Zurück zum Zitat Khoury MJ, Cordero JF, Greenberg F et al (1983) A population study of the VACTERL association: evidence for its etiologic heterogeneity. Pediatrics 71(5):815–820PubMed Khoury MJ, Cordero JF, Greenberg F et al (1983) A population study of the VACTERL association: evidence for its etiologic heterogeneity. Pediatrics 71(5):815–820PubMed
41.
Zurück zum Zitat Garcia-Barcelo MM, Wong KK, Lui VC et al (2008) Identification of a HOXD13 mutation in a VACTERL patient. Am J Med Genet A 146A(24):3181–3185PubMed Garcia-Barcelo MM, Wong KK, Lui VC et al (2008) Identification of a HOXD13 mutation in a VACTERL patient. Am J Med Genet A 146A(24):3181–3185PubMed
42.
Zurück zum Zitat Solomon BD, Pineda-Alvarez DE, Raam MS et al (2010) Evidence for inheritance in patients with VACTERL association. Hum Genet 127(6):731–733PubMedCentralPubMed Solomon BD, Pineda-Alvarez DE, Raam MS et al (2010) Evidence for inheritance in patients with VACTERL association. Hum Genet 127(6):731–733PubMedCentralPubMed
43.
Zurück zum Zitat Solomon BD, Patel A, Cheung SW et al (2011) VACTERL association and mitochondrial dysfunction. Birth Defects Res A Clin Mol Teratol 91(3):192–194PubMedCentralPubMed Solomon BD, Patel A, Cheung SW et al (2011) VACTERL association and mitochondrial dysfunction. Birth Defects Res A Clin Mol Teratol 91(3):192–194PubMedCentralPubMed
44.
Zurück zum Zitat Schramm C, Draaken M, Bartels E et al (2011) De novo microduplication at 22q11.21 in a patient with VACTERL association. Eur J Med Genet 54(1):9–13PubMed Schramm C, Draaken M, Bartels E et al (2011) De novo microduplication at 22q11.21 in a patient with VACTERL association. Eur J Med Genet 54(1):9–13PubMed
45.
Zurück zum Zitat Nagasaki K, Itoh M, Naoki O et al (2011) Two cases of 22q11.2 deletion syndrome with anorectal anomalies and growth retardation. J Pediatr Endocrinol Metab 24(7–8):585–586PubMed Nagasaki K, Itoh M, Naoki O et al (2011) Two cases of 22q11.2 deletion syndrome with anorectal anomalies and growth retardation. J Pediatr Endocrinol Metab 24(7–8):585–586PubMed
46.
Zurück zum Zitat Schramm C, Draaken M, Tewes G et al (2011) Autosomal-dominant non-syndromic anal atresia: sequencing of candidate genes, array-based molecular karyotyping, and review of the literature. Eur J Pediatr 170(6):741–746PubMed Schramm C, Draaken M, Tewes G et al (2011) Autosomal-dominant non-syndromic anal atresia: sequencing of candidate genes, array-based molecular karyotyping, and review of the literature. Eur J Pediatr 170(6):741–746PubMed
47.
Zurück zum Zitat Wong EH, Ng CL, Lui VC et al (2013) Gene network analysis of candidate Loci for human anorectal malformations. PLoS One 8(8):e69142PubMedCentralPubMed Wong EH, Ng CL, Lui VC et al (2013) Gene network analysis of candidate Loci for human anorectal malformations. PLoS One 8(8):e69142PubMedCentralPubMed
48.
Zurück zum Zitat Carter TC, Kay DM et al (2013) Anorectal atresia and variants at predicted regulatory sites in candidate genes. Ann Hum Genet 77(1):31–46PubMedCentralPubMed Carter TC, Kay DM et al (2013) Anorectal atresia and variants at predicted regulatory sites in candidate genes. Ann Hum Genet 77(1):31–46PubMedCentralPubMed
49.
Zurück zum Zitat Moore SW (2013) Associations of anorectal malformations and related syndromes. Pediatr Surg Int 29(7):665–676PubMed Moore SW (2013) Associations of anorectal malformations and related syndromes. Pediatr Surg Int 29(7):665–676PubMed
50.
Zurück zum Zitat Kimmel SG, Mo R, Hui CC et al (2000) New mouse models of congenital anorectal malformations. J Pediatr Surg 35(2):227–230 (discussion 230-1)PubMed Kimmel SG, Mo R, Hui CC et al (2000) New mouse models of congenital anorectal malformations. J Pediatr Surg 35(2):227–230 (discussion 230-1)PubMed
51.
Zurück zum Zitat Ming JE, Roessler E, Muenke M (1998) Human developmental disorders and the Sonic hedgehog pathway. Mol Med Today 4(8):343–349PubMed Ming JE, Roessler E, Muenke M (1998) Human developmental disorders and the Sonic hedgehog pathway. Mol Med Today 4(8):343–349PubMed
52.
Zurück zum Zitat Seifert AW, Bouldin CM, Choi KS et al (2009) Multiphasic and tissue-specific roles of sonic hedgehog in cloacal septation and external genitalia development. Development 136(23):3949–3957PubMedCentralPubMed Seifert AW, Bouldin CM, Choi KS et al (2009) Multiphasic and tissue-specific roles of sonic hedgehog in cloacal septation and external genitalia development. Development 136(23):3949–3957PubMedCentralPubMed
53.
Zurück zum Zitat Roberts DJ, Smith DM, Goff DJ et al (1998) Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 125(15):2791–2801PubMed Roberts DJ, Smith DM, Goff DJ et al (1998) Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 125(15):2791–2801PubMed
54.
Zurück zum Zitat Mo R, Kim JH, Zhang J et al (2001) Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol 159(2):765–774PubMedCentralPubMed Mo R, Kim JH, Zhang J et al (2001) Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol 159(2):765–774PubMedCentralPubMed
55.
Zurück zum Zitat Zhang J, Zhang ZB, Gao H et al (2009) Down-regulation of SHH/BMP4 signalling in human anorectal malformations. J Int Med Res 37(6):1842–1850PubMed Zhang J, Zhang ZB, Gao H et al (2009) Down-regulation of SHH/BMP4 signalling in human anorectal malformations. J Int Med Res 37(6):1842–1850PubMed
56.
Zurück zum Zitat Huang Y, Zhang P, Zheng S et al (2014) Hypermethylation of SHH in the pathogenesis of congenital anorectal malformations. J Pediatr Surg 49(9):1400–1404PubMed Huang Y, Zhang P, Zheng S et al (2014) Hypermethylation of SHH in the pathogenesis of congenital anorectal malformations. J Pediatr Surg 49(9):1400–1404PubMed
57.
Zurück zum Zitat Mullor JL, Dahmane N, Sun T et al (2001) Wnt signals are targets and mediators of Gli function. Curr Biol 11(10):769–773PubMed Mullor JL, Dahmane N, Sun T et al (2001) Wnt signals are targets and mediators of Gli function. Curr Biol 11(10):769–773PubMed
58.
Zurück zum Zitat Brewster R, Mullor JL, Ruiz IAA (2000) Gli2 functions in FGF signaling during antero-posterior patterning. Development 127(20):4395–4405PubMed Brewster R, Mullor JL, Ruiz IAA (2000) Gli2 functions in FGF signaling during antero-posterior patterning. Development 127(20):4395–4405PubMed
59.
Zurück zum Zitat Litingtung Y, Chiang C (2000) Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat Neurosci 3(10):979–985PubMed Litingtung Y, Chiang C (2000) Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nat Neurosci 3(10):979–985PubMed
60.
Zurück zum Zitat Regl G, Kasper M, Schnidar H et al (2004) Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64(21):7724–7731PubMed Regl G, Kasper M, Schnidar H et al (2004) Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64(21):7724–7731PubMed
61.
Zurück zum Zitat Musani V, Gorry P, Basta-Juzbasic A et al (2006) Mutation in exon 7 of PTCH deregulates SHH/PTCH/SMO signaling: possible linkage to WNT. Int J Mol Med 17(5):755–759PubMed Musani V, Gorry P, Basta-Juzbasic A et al (2006) Mutation in exon 7 of PTCH deregulates SHH/PTCH/SMO signaling: possible linkage to WNT. Int J Mol Med 17(5):755–759PubMed
62.
Zurück zum Zitat Sun LS, Li XF, Li TJ (2008) PTCH1 and SMO gene alterations in keratocystic odontogenic tumors. J Dent Res 87(6):575–579PubMed Sun LS, Li XF, Li TJ (2008) PTCH1 and SMO gene alterations in keratocystic odontogenic tumors. J Dent Res 87(6):575–579PubMed
63.
Zurück zum Zitat Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13(4):157–162PubMed Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13(4):157–162PubMed
64.
Zurück zum Zitat Danielson KG, Pillarisetti J, Cohen IR et al (1995) Characterization of the complete genomic structure of the human WNT-5A gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J Biol Chem 270(52):31225–31234PubMed Danielson KG, Pillarisetti J, Cohen IR et al (1995) Characterization of the complete genomic structure of the human WNT-5A gene, functional analysis of its promoter, chromosomal mapping, and expression in early human embryogenesis. J Biol Chem 270(52):31225–31234PubMed
65.
Zurück zum Zitat Jonsson M, Andersson T (2001) Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci 114(Pt 11):2043–2053PubMed Jonsson M, Andersson T (2001) Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci 114(Pt 11):2043–2053PubMed
66.
Zurück zum Zitat Katoh M (2008) WNT signaling in stem cell biology and regenerative medicine. Curr Drug Targets 9(7):565–570PubMed Katoh M (2008) WNT signaling in stem cell biology and regenerative medicine. Curr Drug Targets 9(7):565–570PubMed
67.
Zurück zum Zitat Jia H, Chen Q, Zhang T et al (2011) Wnt5a expression in the hindgut of fetal rats with chemically induced anorectal malformations–studies in the ETU rat model. Int J Colorectal Dis 26(4):493–499PubMed Jia H, Chen Q, Zhang T et al (2011) Wnt5a expression in the hindgut of fetal rats with chemically induced anorectal malformations–studies in the ETU rat model. Int J Colorectal Dis 26(4):493–499PubMed
68.
Zurück zum Zitat Tai CC, Sala FG, Ford HR et al (2009) Wnt5a knock-out mouse as a new model of anorectal malformation. J Surg Res 156(2):278–282PubMedCentralPubMed Tai CC, Sala FG, Ford HR et al (2009) Wnt5a knock-out mouse as a new model of anorectal malformation. J Surg Res 156(2):278–282PubMedCentralPubMed
69.
Zurück zum Zitat Guo C, Sun Y, Guo C et al (2014) Dkk1 in the peri-cloaca mesenchyme regulates formation of anorectal and genitourinary tracts. Dev Biol 385(1):41–51PubMedCentralPubMed Guo C, Sun Y, Guo C et al (2014) Dkk1 in the peri-cloaca mesenchyme regulates formation of anorectal and genitourinary tracts. Dev Biol 385(1):41–51PubMedCentralPubMed
70.
Zurück zum Zitat Hunt P, Krumlauf R (1992) Hox codes and positional specification in vertebrate embryonic axes. Annu Rev Cell Biol 8:227–256PubMed Hunt P, Krumlauf R (1992) Hox codes and positional specification in vertebrate embryonic axes. Annu Rev Cell Biol 8:227–256PubMed
71.
Zurück zum Zitat Fromental-Ramain C, Warot X, Lakkaraju S et al (1996) Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122(2):461–472PubMed Fromental-Ramain C, Warot X, Lakkaraju S et al (1996) Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 122(2):461–472PubMed
72.
Zurück zum Zitat Yahagi N, Kosaki R, Ito T et al (2004) Position-specific expression of Hox genes along the gastrointestinal tract. Congenit Anom (Kyoto) 44(1):18–26 Yahagi N, Kosaki R, Ito T et al (2004) Position-specific expression of Hox genes along the gastrointestinal tract. Congenit Anom (Kyoto) 44(1):18–26
73.
Zurück zum Zitat Kawazoe Y, Sekimoto T, Araki M et al (2002) Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev Growth Differ 44(1):77–84PubMed Kawazoe Y, Sekimoto T, Araki M et al (2002) Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev Growth Differ 44(1):77–84PubMed
74.
Zurück zum Zitat Illig R, Fritsch H, Schwarzer C (2013) Spatio-temporal expression of HOX genes in human hindgut development. Dev Dyn 242(1):53–66PubMed Illig R, Fritsch H, Schwarzer C (2013) Spatio-temporal expression of HOX genes in human hindgut development. Dev Dyn 242(1):53–66PubMed
75.
Zurück zum Zitat Laufer E, Nelson CE, Johnson RL et al (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79(6):993–1003PubMed Laufer E, Nelson CE, Johnson RL et al (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79(6):993–1003PubMed
76.
Zurück zum Zitat McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22(3):260–264PubMed McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22(3):260–264PubMed
77.
Zurück zum Zitat Warot X, Fromental-Ramain C, Fraulob V et al (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124(23):4781–4791PubMed Warot X, Fromental-Ramain C, Fraulob V et al (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124(23):4781–4791PubMed
78.
Zurück zum Zitat Kondo T, Dolle P, Zakany J et al (1996) Function of posterior HoxD genes in the morphogenesis of the anal sphincter. Development 122(9):2651–2659PubMed Kondo T, Dolle P, Zakany J et al (1996) Function of posterior HoxD genes in the morphogenesis of the anal sphincter. Development 122(9):2651–2659PubMed
79.
Zurück zum Zitat Pyati UJ, Cooper MS, Davidson AJ et al (2006) Sustained Bmp signaling is essential for cloaca development in zebrafish. Development 133(11):2275–2284PubMed Pyati UJ, Cooper MS, Davidson AJ et al (2006) Sustained Bmp signaling is essential for cloaca development in zebrafish. Development 133(11):2275–2284PubMed
80.
Zurück zum Zitat Suzuki K, Adachi Y, Numata T et al (2012) Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia. PLoS One 7(9):e43453PubMedCentralPubMed Suzuki K, Adachi Y, Numata T et al (2012) Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia. PLoS One 7(9):e43453PubMedCentralPubMed
81.
Zurück zum Zitat Sasaki Y, Iwai N, Tsuda T et al (2004) Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryos with anorectal malformations. J Pediatr Surg 39(2):170–173 (discussion 170-3)PubMed Sasaki Y, Iwai N, Tsuda T et al (2004) Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryos with anorectal malformations. J Pediatr Surg 39(2):170–173 (discussion 170-3)PubMed
82.
Zurück zum Zitat Bottcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26(1):63–77PubMed Bottcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26(1):63–77PubMed
83.
Zurück zum Zitat Gambarini AG, Miranda MT, Viviani W et al (1996) Structure and function of fibroblast growth factor. Braz J Med Biol Res 29(7):835–839PubMed Gambarini AG, Miranda MT, Viviani W et al (1996) Structure and function of fibroblast growth factor. Braz J Med Biol Res 29(7):835–839PubMed
84.
Zurück zum Zitat Kondoh K, Kobayashi K, Nishida H (2003) Suppression of macho-1-directed muscle fate by FGF and BMP is required for formation of posterior endoderm in ascidian embryos. Development 130(14):3205–3216PubMed Kondoh K, Kobayashi K, Nishida H (2003) Suppression of macho-1-directed muscle fate by FGF and BMP is required for formation of posterior endoderm in ascidian embryos. Development 130(14):3205–3216PubMed
85.
Zurück zum Zitat Dessimoz J, Opoka R, Kordich JJ et al (2006) FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 123(1):42–55PubMed Dessimoz J, Opoka R, Kordich JJ et al (2006) FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 123(1):42–55PubMed
86.
Zurück zum Zitat Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109PubMedCentralPubMed Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109PubMedCentralPubMed
87.
Zurück zum Zitat Yin SJ, Tang XB, Li FF et al (2013) Spatiotemporal expression of fibroblast growth factor 10 in human hindgut and anorectal development. Cells Tissues Organs 198(1):28–34PubMed Yin SJ, Tang XB, Li FF et al (2013) Spatiotemporal expression of fibroblast growth factor 10 in human hindgut and anorectal development. Cells Tissues Organs 198(1):28–34PubMed
88.
Zurück zum Zitat Fairbanks TJ, De Langhe S, Sala FG et al (2004) Fibroblast growth factor 10 (Fgf10) invalidation results in anorectal malformation in mice. J Pediatr Surg 39(3):360–365 (discussion 360-5)PubMed Fairbanks TJ, De Langhe S, Sala FG et al (2004) Fibroblast growth factor 10 (Fgf10) invalidation results in anorectal malformation in mice. J Pediatr Surg 39(3):360–365 (discussion 360-5)PubMed
89.
Zurück zum Zitat Kruger V, Khoshvaghti M, Reutter H et al (2008) Investigation of FGF10 as a candidate gene in patients with anorectal malformations and exstrophy of the cloaca. Pediatr Surg Int 24(8):893–897PubMed Kruger V, Khoshvaghti M, Reutter H et al (2008) Investigation of FGF10 as a candidate gene in patients with anorectal malformations and exstrophy of the cloaca. Pediatr Surg Int 24(8):893–897PubMed
90.
Zurück zum Zitat Tsuda T, Iwai N, Deguchi E et al (2011) PCSK5 and GDF11 expression in the hindgut region of mouse embryos with anorectal malformations. Eur J Pediatr Surg 21(4):238–241PubMed Tsuda T, Iwai N, Deguchi E et al (2011) PCSK5 and GDF11 expression in the hindgut region of mouse embryos with anorectal malformations. Eur J Pediatr Surg 21(4):238–241PubMed
91.
Zurück zum Zitat Ince TA, Cviko AP, Quade BJ et al (2002) p63 Coordinates anogenital modeling and epithelial cell differentiation in the developing female urogenital tract. Am J Pathol 161(4):1111–1117PubMedCentralPubMed Ince TA, Cviko AP, Quade BJ et al (2002) p63 Coordinates anogenital modeling and epithelial cell differentiation in the developing female urogenital tract. Am J Pathol 161(4):1111–1117PubMedCentralPubMed
92.
Zurück zum Zitat Su P, Yuan Y, Huang Y et al (2013) Anorectal malformation associated with a mutation in the P63 gene in a family with split hand-foot malformation. Int J Colorectal Dis 28(12):1621–1627PubMedCentralPubMed Su P, Yuan Y, Huang Y et al (2013) Anorectal malformation associated with a mutation in the P63 gene in a family with split hand-foot malformation. Int J Colorectal Dis 28(12):1621–1627PubMedCentralPubMed
93.
Zurück zum Zitat Chawengsaksophak K, Beck F (1996) Chromosomal localization of cdx2, a murine homologue of the Drosophila gene caudal, to mouse chromosome 5. Genomics 34(2):270–271PubMed Chawengsaksophak K, Beck F (1996) Chromosomal localization of cdx2, a murine homologue of the Drosophila gene caudal, to mouse chromosome 5. Genomics 34(2):270–271PubMed
94.
Zurück zum Zitat Zhang T, Tang XB, Wang LL et al (2013) Mutations and down-regulation of CDX1 in children with anorectal malformations. Int J Med Sci 10(2):191–197PubMedCentralPubMed Zhang T, Tang XB, Wang LL et al (2013) Mutations and down-regulation of CDX1 in children with anorectal malformations. Int J Med Sci 10(2):191–197PubMedCentralPubMed
95.
Zurück zum Zitat Jia H, Chen Q, Zhang T et al (2012) The expression analysis of Notch-1 and Jagged-2 during the development of the hindgut in rat embryos with ethylenethiourea induced anorectal malformations. J Surg Res 172(1):131–136PubMed Jia H, Chen Q, Zhang T et al (2012) The expression analysis of Notch-1 and Jagged-2 during the development of the hindgut in rat embryos with ethylenethiourea induced anorectal malformations. J Surg Res 172(1):131–136PubMed
96.
Zurück zum Zitat van Rooij IA, Wijers CH, Rieu PN et al (2010) Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res A Clin Mol Teratol 88(3):152–158PubMed van Rooij IA, Wijers CH, Rieu PN et al (2010) Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res A Clin Mol Teratol 88(3):152–158PubMed
97.
Zurück zum Zitat Lin S, Munsie JP, Herdt-Losavio ML et al (2012) Maternal asthma medication use and the risk of selected birth defects. Pediatrics 129(2):e317–e324PubMed Lin S, Munsie JP, Herdt-Losavio ML et al (2012) Maternal asthma medication use and the risk of selected birth defects. Pediatrics 129(2):e317–e324PubMed
98.
Zurück zum Zitat Tinker SC, Reefhuis J, Dellinger AM et al (2011) Maternal injuries during the periconceptional period and the risk of birth defects, National Birth Defects Prevention Study, 1997–2005. Paediatr Perinat Epidemiol 25(5):487–496PubMed Tinker SC, Reefhuis J, Dellinger AM et al (2011) Maternal injuries during the periconceptional period and the risk of birth defects, National Birth Defects Prevention Study, 1997–2005. Paediatr Perinat Epidemiol 25(5):487–496PubMed
99.
Zurück zum Zitat Parker SE, Werler MM, Shaw GM et al (2012) Dietary glycemic index and the risk of birth defects. Am J Epidemiol 176(12):1110–1120PubMedCentralPubMed Parker SE, Werler MM, Shaw GM et al (2012) Dietary glycemic index and the risk of birth defects. Am J Epidemiol 176(12):1110–1120PubMedCentralPubMed
100.
Zurück zum Zitat Huang Y, Zheng S (2011) The effect of vitamin A deficiency during pregnancy on anorectal malformations. J Pediatr Surg 46(7):1400–1405PubMed Huang Y, Zheng S (2011) The effect of vitamin A deficiency during pregnancy on anorectal malformations. J Pediatr Surg 46(7):1400–1405PubMed
101.
Zurück zum Zitat Myers MF, Li S, Correa-Villasenor A et al (2001) Folic acid supplementation and risk for imperforate anus in China. Am J Epidemiol 154(11):1051–1056PubMed Myers MF, Li S, Correa-Villasenor A et al (2001) Folic acid supplementation and risk for imperforate anus in China. Am J Epidemiol 154(11):1051–1056PubMed
102.
Zurück zum Zitat Waller DK, Shaw GM, Rasmussen SA et al (2007) Arch Pediatr Adolesc Med 161(8):745–750PubMed Waller DK, Shaw GM, Rasmussen SA et al (2007) Arch Pediatr Adolesc Med 161(8):745–750PubMed
103.
Zurück zum Zitat Stothard KJ, Tennant PW, Bell R et al (2009) Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301(6):636–650PubMed Stothard KJ, Tennant PW, Bell R et al (2009) Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301(6):636–650PubMed
104.
Zurück zum Zitat Wijers CH, van Rooij IA, Bakker MK et al (2013) Anorectal malformations and pregnancy-related disorders: a registry-based case-control study in 17 European regions. BJOG 120(9):1066–1074PubMed Wijers CH, van Rooij IA, Bakker MK et al (2013) Anorectal malformations and pregnancy-related disorders: a registry-based case-control study in 17 European regions. BJOG 120(9):1066–1074PubMed
105.
Zurück zum Zitat Sheridan E, Wright J, Small N et al (2013) Risk factors for congenital anomaly in a multiethnic birth cohort: an analysis of the Born in Bradford study. Lancet 382(9901):1350–1359PubMed Sheridan E, Wright J, Small N et al (2013) Risk factors for congenital anomaly in a multiethnic birth cohort: an analysis of the Born in Bradford study. Lancet 382(9901):1350–1359PubMed
106.
Zurück zum Zitat Reefhuis J, Honein MA, Schieve LA et al (2009) Assisted reproductive technology and major structural birth defects in the United States. Hum Reprod 24(2):360–366PubMed Reefhuis J, Honein MA, Schieve LA et al (2009) Assisted reproductive technology and major structural birth defects in the United States. Hum Reprod 24(2):360–366PubMed
107.
Zurück zum Zitat Miller EA, Manning SE, Rasmussen SA et al (2009) Maternal exposure to tobacco smoke, alcohol and caffeine, and risk of anorectal atresia: National Birth Defects Prevention Study 1997–2003. Paediatr Perinat Epidemiol 23(1):9–17PubMed Miller EA, Manning SE, Rasmussen SA et al (2009) Maternal exposure to tobacco smoke, alcohol and caffeine, and risk of anorectal atresia: National Birth Defects Prevention Study 1997–2003. Paediatr Perinat Epidemiol 23(1):9–17PubMed
108.
Zurück zum Zitat Castilla EE, Lopez-Camelo JS, Campana H (1999) Altitude as a risk factor for congenital anomalies. Am J Med Genet 86(1):9–14PubMed Castilla EE, Lopez-Camelo JS, Campana H (1999) Altitude as a risk factor for congenital anomalies. Am J Med Genet 86(1):9–14PubMed
109.
Zurück zum Zitat Zwink N, Jenetzky E, Brenner H (2011) Parental risk factors and anorectal malformations: systematic review and meta-analysis. Orphanet J Rare Dis 6:25PubMedCentralPubMed Zwink N, Jenetzky E, Brenner H (2011) Parental risk factors and anorectal malformations: systematic review and meta-analysis. Orphanet J Rare Dis 6:25PubMedCentralPubMed
110.
Zurück zum Zitat Pasternak B, Svanstrom H, Molgaard-Nielsen D et al (2013) Metoclopramide in pregnancy and risk of major congenital malformations and fetal death. JAMA 310(15):1601–1611PubMed Pasternak B, Svanstrom H, Molgaard-Nielsen D et al (2013) Metoclopramide in pregnancy and risk of major congenital malformations and fetal death. JAMA 310(15):1601–1611PubMed
111.
Zurück zum Zitat Carter TC, Druschel CM, Romitti PA et al (2008) Antifungal drugs and the risk of selected birth defects. Am J Obstet Gynecol 198(2):191.e1–191.e7 Carter TC, Druschel CM, Romitti PA et al (2008) Antifungal drugs and the risk of selected birth defects. Am J Obstet Gynecol 198(2):191.e1–191.e7
112.
Zurück zum Zitat Kubota Y, Shimotake T, Iwai N (2000) Congenital anomalies in mice induced by etretinate. Eur J Pediatr Surg 10(4):248–251PubMed Kubota Y, Shimotake T, Iwai N (2000) Congenital anomalies in mice induced by etretinate. Eur J Pediatr Surg 10(4):248–251PubMed
113.
Zurück zum Zitat Pitera JE, Smith VV, Woolf AS et al (2001) Embryonic gut anomalies in a mouse model of retinoic Acid-induced caudal regression syndrome: delayed gut looping, rudimentary cecum, and anorectal anomalies. Am J Pathol 159(6):2321–2329PubMedCentralPubMed Pitera JE, Smith VV, Woolf AS et al (2001) Embryonic gut anomalies in a mouse model of retinoic Acid-induced caudal regression syndrome: delayed gut looping, rudimentary cecum, and anorectal anomalies. Am J Pathol 159(6):2321–2329PubMedCentralPubMed
114.
Zurück zum Zitat Arana J, Villanueva A, Guarch R et al (2001) Anorectal atresia. An experimental model in the rat. Eur J Pediatr Surg 11(3):192–195PubMed Arana J, Villanueva A, Guarch R et al (2001) Anorectal atresia. An experimental model in the rat. Eur J Pediatr Surg 11(3):192–195PubMed
115.
Zurück zum Zitat Dawrant MJ, Giles S, Bannigan J et al (2007) Adriamycin produces a reproducible teratogenic model of vertebral, anal, cardiovascular, tracheal, esophageal, renal, and limb anomalies in the mouse. J Pediatr Surg 42(10):1652–1658PubMed Dawrant MJ, Giles S, Bannigan J et al (2007) Adriamycin produces a reproducible teratogenic model of vertebral, anal, cardiovascular, tracheal, esophageal, renal, and limb anomalies in the mouse. J Pediatr Surg 42(10):1652–1658PubMed
116.
Zurück zum Zitat Jiang JT, Sun WL, Jing YF et al (2011) Prenatal exposure to di-n-butyl phthalate induces anorectal malformations in male rat offspring. Toxicology 290(2–3):322–326PubMed Jiang JT, Sun WL, Jing YF et al (2011) Prenatal exposure to di-n-butyl phthalate induces anorectal malformations in male rat offspring. Toxicology 290(2–3):322–326PubMed
117.
Zurück zum Zitat Zhu H, Kartiko S, Finnell RH (2009) Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet 75(5):409–423PubMed Zhu H, Kartiko S, Finnell RH (2009) Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet 75(5):409–423PubMed
118.
Zurück zum Zitat Mandhan P, Beasley S, Hale T et al (2006) Sonic hedgehog expression in the development of hindgut in ETU-exposed fetal rats. Pediatr Surg Int 22(1):31–36PubMed Mandhan P, Beasley S, Hale T et al (2006) Sonic hedgehog expression in the development of hindgut in ETU-exposed fetal rats. Pediatr Surg Int 22(1):31–36PubMed
119.
Zurück zum Zitat Mandhan P, Quan QB, Beasley S et al (2006) Sonic hedgehog, BMP4, and Hox genes in the development of anorectal malformations in Ethylenethiourea-exposed fetal rats. J Pediatr Surg 41(12):2041–2045PubMed Mandhan P, Quan QB, Beasley S et al (2006) Sonic hedgehog, BMP4, and Hox genes in the development of anorectal malformations in Ethylenethiourea-exposed fetal rats. J Pediatr Surg 41(12):2041–2045PubMed
120.
Zurück zum Zitat Dan Z, Bo ZZ, Tao Z et al (2010) Hoxd-13 expression in the development of hindgut in ethylenethiourea-exposed fetal rats. J Pediatr Surg 45(4):755–761PubMed Dan Z, Bo ZZ, Tao Z et al (2010) Hoxd-13 expression in the development of hindgut in ethylenethiourea-exposed fetal rats. J Pediatr Surg 45(4):755–761PubMed
121.
Zurück zum Zitat Wong EH, Cui L, Ng CL et al (2013) Genome-wide copy number variation study in anorectal malformations. Hum Mol Genet 22(3):621–631PubMed Wong EH, Cui L, Ng CL et al (2013) Genome-wide copy number variation study in anorectal malformations. Hum Mol Genet 22(3):621–631PubMed
122.
Zurück zum Zitat Draaken M, Prins W, Zeidler C et al (2012) Involvement of the WNT and FGF signaling pathways in non-isolated anorectal malformations: sequencing analysis of WNT3A, WNT5A, WNT11, DACT1, FGF10, FGFR2 and the T gene. Int J Mol Med 30(6):1459–1464PubMed Draaken M, Prins W, Zeidler C et al (2012) Involvement of the WNT and FGF signaling pathways in non-isolated anorectal malformations: sequencing analysis of WNT3A, WNT5A, WNT11, DACT1, FGF10, FGFR2 and the T gene. Int J Mol Med 30(6):1459–1464PubMed
123.
Zurück zum Zitat Garcia-Barcelo MM, Chi-Hang LV et al (2008) Mutational analysis of SHH and GLI3 in anorectal malformations. Birth Defects Res A Clin Mol Teratol 82(9):644–648PubMed Garcia-Barcelo MM, Chi-Hang LV et al (2008) Mutational analysis of SHH and GLI3 in anorectal malformations. Birth Defects Res A Clin Mol Teratol 82(9):644–648PubMed
124.
Zurück zum Zitat Moore SW, Zaahl MG (2007) Association of endothelin-beta receptor (EDNRB) gene variants in anorectal malformations. J Pediatr Surg 42(7):1266–1270PubMed Moore SW, Zaahl MG (2007) Association of endothelin-beta receptor (EDNRB) gene variants in anorectal malformations. J Pediatr Surg 42(7):1266–1270PubMed
Metadaten
Titel
Anorectal malformation: the etiological factors
verfasst von
Chen Wang
Long Li
Wei Cheng
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Surgery International / Ausgabe 9/2015
Print ISSN: 0179-0358
Elektronische ISSN: 1437-9813
DOI
https://doi.org/10.1007/s00383-015-3685-0

Weitere Artikel der Ausgabe 9/2015

Pediatric Surgery International 9/2015 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.