Skip to main content
Erschienen in: International Journal of Colorectal Disease 8/2018

Open Access 26.04.2018 | Short Communication

Mucinous components assessed by magnetic resonance imaging in primary rectal cancer tissue before and after chemoradiotherapy and tumor response

verfasst von: Hiroshi Miyakita, Sotaro Sadahiro, Takashi Ogimi, Gota Saito, Kazutake Okada, Akira Tanaka, Toshiyuki Suzuki, Hiroshi Kajiwara, Hiroshi Yamamuro, Takeshi Akiba

Erschienen in: International Journal of Colorectal Disease | Ausgabe 8/2018

Abstract

Background

Mucinous rectal carcinoma has been reported to have a lower survival rate and a poorer histologic response to chemoradiotherapy(CRT). Magnetic resonance imaging (MRI) can accurately evaluate the amount of mucin pools (MP) in primary cancer tissue. We compared the degree of MP on MRI before and after CRT with the histologic findings of resected specimens to investigate the predictors of response to CRT.

Methods

The study group comprised 205 patients with rectal adenocarcinoma who received preoperative CRT. MPs were measured on MRI before and after CRT and in resected specimens. The degree of MP was classified into five classes according to the MP area ratio: 0%, class I; 1 to 19%, class II; 20 to 49%, class III; and 50% or higher, class IV.

Results

The degree of MP on MRI was largely unchanged after CRT; however, the MP on MRI after CRT was underestimated in 26.3% of patients as compared with that in resected specimens. A pathological complete response was obtained in patients who initially had no MP or had an MP ratio of less than 20%. The tumor volume was significantly greater, and the rates of tumor shrinkage and T downstaging were significantly lower in patients who had an MP area ratio of 20% or higher before CRT than in those who had an MP area ratio of less than 20%.

Conclusions

The MP area ratio measured on MRI before treatment was closely associated with the response to CRT and is a potentially useful predictor of treatment response.

Introduction

Mucinous carcinoma is a characteristic histologic type of colorectal cancer that has been reported to account for 8 to 10%, and 17% [1] and 7.1% [2] of rectal cancers. In patients with locally advanced rectal cancer, the standard treatment is CRT followed by surgery. Mucinous carcinoma has been reported to be associated with a lower survival rate [1, 2], a poorer histologic response to preoperative CRT, and a lower pathological complete response (pCR) rate than non-mucinous carcinoma (differentiated adenocarcinoma) [3, 4].
Mucinous carcinoma is difficult to diagnose on biopsy, and the rate of accurate diagnosis has been reported to be 5 to 8% [3, 4]. Magnetic resonance imaging (MRI) can be used to accurately evaluate the amount of MP in primary cancer tissue [5, 6].
CRT has been reported to induce the formation of mucin pools (MP) in cancer tissue [3, 4]. We therefore hypothesized that the amount of MP in primary cancer tissue evaluated on MRI before CRT is closely related to the response to CRT. We compared the degree of MP on MRI findings before and after CRT with the histologic findings of the resected specimens to investigate predictors of the response to CRT.

Subjects and methods

Subjects

The study group comprised 205 patients with clinical T3-T4, any-N adenocarcinoma of the middle and lower rectum who received radiotherapy (40 to 45 Gy) and concurrent chemotherapy with oral uracil/tegafur plus leucovorin or with S-1 from January 2006 through December 2014 [7, 8]. Surgical resection was performed within 6 to 8 weeks after the completion of CRT.

Evaluation of MP

The degree of MP was evaluated on MRI in accordance with the reports of Hussain [5] and Kim [6]. The area ratio of MP on the maximum cut surface of the primary tissue was calculated. A 1.5-T MRI system with a surface coil was used. Imaging analysis was performed using a Digital Imaging and Communications in Medicine (DICOM) viewer (SDS viewer, Ver. 8.0.4.4, TechMatrix Corporation, Tokyo, Japan).
We histologically evaluated the most predominant histologic type on specimens stained with hematoxylin and eosin and assessed the presence or absence of MP and the MP area ratio on the maximum cut surface of the tumors. The MP area ratio was separately evaluated by two physicians (HM and SS), and the mean value was adopted. The degree of MP was classified into the following four levels according to the MP area ratio: MP 0%, class I; MP 1 to 19%, class II; MP 20 to 49%, class III; and MP 50% or higher, class IV.

Evaluation of tumor shrinkage rate and histologic regression

The tumor shrinkage rate was calculated on the basis of the tumor size evaluated on MRI before and after CRT [9]. Histologic regression was classified according to the tumor regression grade (TRG) [10]. TRG was classified as Grade 1 (complete regression), Grade 2 (presence of rare residual cancer cells), Grade 3 (increased number of residual cancer cells), Grade 4 (residual cancer outgrowing fibrosis), or Grade 5 (absence of regression change). A TRG of 1 and 2 was defined as marked regression.

Statistical analyses

Groups were compared with the use of Fisher’s exact test or the chi-square test for categorical variables and the Mann-Whitney U test or the Kruskal-Wallis test for continuous variables. The correspondence rates between the classes of MP evaluated on MRI before CRT, MRI after CRT, and in resected specimens were analyzed with the kappa coefficient (k). In all statistical analyses, a two-sided value of p < 0.05 was considered to indicate statistical significance. Statistical calculations were performed using JMP version 11 software (SAS Institute Inc., Cary, NC, USA).
This study was approved by the institutional review board of our University (08R-032), and all patients provided their written informed consent.

Results

Patient characteristics

The tumor was located in the middle rectum in 82 patients and the lower rectum in 123 patients. The pathologic stage after CRT (ypStage) was ypStage 0 (including pCR) in 31 patients (15.1%), ypStage I in 66 patients (32.2%), ypStage II in 62 patients (30.2%), ypStage III in 37 patients (18.5%), and ypStage IV in nine patients (4.4%).

Evaluation of MP on MRI after CRT and evaluation of MP in resected specimens

MPs were histologically found in 63 (30.7%) of the 205 patients. Class III and IV MPs, in which MPs accounted for at least 20% of the tumor volume, were found in 20 patients (9.7%).
The class of MP was the same on MRI and resected specimens in 151 patients (73.7%). In the other 54 patients (26.3%), the class of MP was consistently higher in resected specimens and was not lower in resected specimens in any patient. MP was confirmed histologically in 42 (20.5%) of the 184 patients with no MP on MRI. The correspondence rate of the MP between the MRI findings and histology was poor (k = 0.023).

Comparison of MP evaluated on MRI before and after CRT

The classes of MP before and after CRT were the same in 193 patients (94.1%). The class of MP increased after CRT in four patients (1.9%) and decreased after CRT in eight patients (3.9%). The degree of MP evaluated on MRI was largely unchanged between before and after CRT. The correspondence rate of the MRI findings was moderate (k = 0.50).

Relations of the class of MP before CRT to tumor volume, downstaging, tumor shrinkage rate, and histologic regression

The MP area ratio was measured on MRI before treatment, and 20% was regarded as the cutoff value. The tumor volumes, shrinkage rates, T and N downstaging, and pCR rates are shown in Table 1. Patients with an MP of < 20% had significantly smaller tumors (p = 0.001), a significantly higher shrinkage rate (p = 0.002), and a significantly higher T downstaging rate (p = 0.047) than did patients with an MP of ≥ 20%. All of 25 patients with pCR had an MP of < 20%, with no significant difference in the rates of pCR or marked regression.
Table 1
Tumor volumes, tumor shrinkage rates, and histologic response according to the Class of MP measured on MRI before starting CRT
 
MP < 20%
MP ≧ 20%
p value
n = 194 (%)
n = 11 (%)
Tumor mean volume (cm3)
 Mean ± SD
11.8 ± 13.1
34.6 ± 26.5
0.001*
 Range
0.48–73.5
0.69–81.2
 
Shrinkage rate
 Mean ± SD
0.74 ± 0.17
0.56 ± 0.27
0.002*
 Range
0.17–1.00
0–0.91
 
T factor
 Down stage
112 (58)
3 (27)
0.047†
N factor
 Down stage
82 (49)
4 (44)
0.699†
TRG‡
 1, 2 (marked regression)
120 (62)
7 (64)
0.906†
Pathological evaluation
 pCR§
25 (13)
0
0.204†
*Mann–Whitney U test
† Fisher’s exact test
‡Tumor regression grade
§Pathological complete response

Discussion

As for the diagnosis of MP on MRI, T2-weighted fast spin-echo imaging has been reported to be useful for the diagnosis of mucinous carcinoma in the primary tissue [5]. Kim et al. reported that mucinous carcinoma was correctly diagnosed in 97% of patients [6]. In our study, however, the evaluation of MP on MRI after CRT was consistent with the histological evaluation of resected specimens in 73.7% of the patients, and MP area ratio was underestimated in 26.3% of the patients. These findings are most likely attributed to the fact that all patients in our study received CRT, whereas the patients in the study of Kim et al. did not receive CRT.
Sclafani F et al. reported that the rate of concordance between the TRG predicted on MRI and the TRG evaluated on resected specimens was only 71% in patients who received CRT. A pCR was correctly diagnosed on MRI in only 74.4% of the patients, indicating that the rate of correctly diagnosis after CRT is not high [11]. In our study, two of 11 patients with an MP area ratio of ≥ 50% (class IV) on resected specimens were evaluated to have class II MP (MP, 1 to 19%) on MRI, suggesting that the diagnostic accuracy of MP on MRI decreases after CRT.
In a recent study, patients were randomly divided into two groups according to the interval between the completion of radiation and surgery: 7 vs. 11 weeks. The colloid response rate was significantly higher in the 11-week group (31.4%) than in the 7-week group (19.4%, p = 0.044) [12]. These findings suggest that CRT induces the formation of MP in some patients. However, when MRI findings before CRT were compared with MRI findings after CRT, the MP area ratio on MRI was evaluated to have increased in only 2% of the patients. We therefore considered that evaluation of the degree of MP before CRT might be most strongly related to the response to CRT.
Patients with an MP of ≥ 20% before CRT had a significantly greater tumor volume, a significantly lower shrinkage rate, and a significantly lower T downstaging rate. None of the patients with an MP of ≥ 20% before CRT had a pCR. These findings are consistent with the results of previous studies showing that mucinous carcinomas are associated with a larger tumor volume and a poorer response to CRT [3, 4].
Mucinous carcinoma is difficult to diagnose on biopsy [3, 4]. In our series, mucinous carcinoma was diagnosed in only one (9%) of 11 patients with an MP of ≥ 20% on MRI before CRT. Therefore, the diagnosis of MP in cancer tissue by MRI before treatment is considered useful for the prediction of treatment response and determination of the treatment strategy.

Conclusions

Patients who had an MP area ratio of ≥ 20% on MRI before treatment had large tumors and a poor response to CRT. The MP area ratio measured on MRI before treatment is useful for the prediction of treatment response and determination of the treatment strategy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The institutional review board approved the present study.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Gao P, Yx S, Yy X, Sun Z, Sun JX, Xu HM, Wang ZN (2013) Does the prognosis of colorectal mucinous carcinoma depend upon the primary tumor site? Results from two independent databases. Histopathology 63:603–615PubMed Gao P, Yx S, Yy X, Sun Z, Sun JX, Xu HM, Wang ZN (2013) Does the prognosis of colorectal mucinous carcinoma depend upon the primary tumor site? Results from two independent databases. Histopathology 63:603–615PubMed
2.
Zurück zum Zitat Hyngstrom JR, Hu CY, Xing Y, You YN, Feig BW, Skibber JM, Rodriguez-Bigas MA, Cormier JN, Chang GJ (2012) Clinicopathology and outcomes for mucinous and signet ring colorectal adenocarcinoma: analysis from the national Cancer data base. Ann Surg Oncol 19:2814–2821CrossRefPubMedPubMedCentral Hyngstrom JR, Hu CY, Xing Y, You YN, Feig BW, Skibber JM, Rodriguez-Bigas MA, Cormier JN, Chang GJ (2012) Clinicopathology and outcomes for mucinous and signet ring colorectal adenocarcinoma: analysis from the national Cancer data base. Ann Surg Oncol 19:2814–2821CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Yu SK, Chand M, Tait DM, Brown G (2014) Magnetic resonance imaging defined mucinous rectal carcinoma is an independent imaging biomarker for poor prognosis and poor response to preoperative chemoradiotherapy. Eur J Cancer 50:920–927CrossRefPubMed Yu SK, Chand M, Tait DM, Brown G (2014) Magnetic resonance imaging defined mucinous rectal carcinoma is an independent imaging biomarker for poor prognosis and poor response to preoperative chemoradiotherapy. Eur J Cancer 50:920–927CrossRefPubMed
4.
Zurück zum Zitat Sengul N, Wexner SD, Woodhouse S, Arrigain S, Xu M, Larach JA, Ahn BK, Weiss EG, Nogueras JJ, Berho M (2006) Effects of radiotherapy on different histopathological types of rectal carcinoma. Color Dis 8:283–288CrossRef Sengul N, Wexner SD, Woodhouse S, Arrigain S, Xu M, Larach JA, Ahn BK, Weiss EG, Nogueras JJ, Berho M (2006) Effects of radiotherapy on different histopathological types of rectal carcinoma. Color Dis 8:283–288CrossRef
5.
Zurück zum Zitat Hussain SM, Outwater EK, Siegelman ES (1999) Mucinous versus nonmucinous rectal carcinomas: differentiation with MR imaging. Radiology 213:79–85CrossRefPubMed Hussain SM, Outwater EK, Siegelman ES (1999) Mucinous versus nonmucinous rectal carcinomas: differentiation with MR imaging. Radiology 213:79–85CrossRefPubMed
6.
Zurück zum Zitat Kim MJ, Park JS, Park SI, Kim NK, Kim JH, Moon HJ, Park YN, Kim WH (2003) Accuracy in differentiation of mucinous and nonmucinous rectal carcinoma on MR imaging. J Comput Assist Tomogr 27:48–55CrossRefPubMed Kim MJ, Park JS, Park SI, Kim NK, Kim JH, Moon HJ, Park YN, Kim WH (2003) Accuracy in differentiation of mucinous and nonmucinous rectal carcinoma on MR imaging. J Comput Assist Tomogr 27:48–55CrossRefPubMed
7.
Zurück zum Zitat Sadahiro S, Suzuki T, Tanaka A, Okada K, Kamijo A, Akiba T, Nakayama Y (2011) Phase I/IIstudy of preoperative concurrent chemoradiotherapy with S-1 for locally advanced, resectable rectal adenocarcinoma. Oncology 81:306–311CrossRefPubMed Sadahiro S, Suzuki T, Tanaka A, Okada K, Kamijo A, Akiba T, Nakayama Y (2011) Phase I/IIstudy of preoperative concurrent chemoradiotherapy with S-1 for locally advanced, resectable rectal adenocarcinoma. Oncology 81:306–311CrossRefPubMed
8.
Zurück zum Zitat Suzuki T, Sadahiro S, Tanaka A, Okada K, Kamata H, Kamijo A, Murayama C, Akiba T, Kawada S (2012) Biopsy specimens obtained 7 days after starting chemoradiotherapy(CRT) provide reliable predictors of response to CRT for rectal cancer. Int Radiat Oncol Biol Phys 85:1232–1238CrossRef Suzuki T, Sadahiro S, Tanaka A, Okada K, Kamata H, Kamijo A, Murayama C, Akiba T, Kawada S (2012) Biopsy specimens obtained 7 days after starting chemoradiotherapy(CRT) provide reliable predictors of response to CRT for rectal cancer. Int Radiat Oncol Biol Phys 85:1232–1238CrossRef
9.
Zurück zum Zitat Suzuki T, Sadahiro S, Tanaka A, Okada K, Saito G, Kamijo A, Akiba T, Kawada S (2014) Relationship between histologic response and the degree of tumor shrinkage after chemoradiotherapy in patients with locally advanced rectal cancer. J Surg Oncol 109:659–664CrossRefPubMed Suzuki T, Sadahiro S, Tanaka A, Okada K, Saito G, Kamijo A, Akiba T, Kawada S (2014) Relationship between histologic response and the degree of tumor shrinkage after chemoradiotherapy in patients with locally advanced rectal cancer. J Surg Oncol 109:659–664CrossRefPubMed
10.
Zurück zum Zitat Mandard AM, Dalibard F, Mandard JC, Marnay J, Amar MH, Petiot JF, Roussel A, Jacob JH, Segol P, Samama G, Ollivier JM, Bonvalot S, Gignoux M (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–2686CrossRefPubMed Mandard AM, Dalibard F, Mandard JC, Marnay J, Amar MH, Petiot JF, Roussel A, Jacob JH, Segol P, Samama G, Ollivier JM, Bonvalot S, Gignoux M (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 73:2680–2686CrossRefPubMed
11.
Zurück zum Zitat Sclafani F, Brown G, Cunnigham D, Wotherspoon A, Mendes LST, Balyasnikova S, Evans J, Peckitt C, Begum R, Tait D, Tabernero J, Glimelius B, Rosello S, Thomas J, Oates J, Chau L (2017) Comparison between MRI and pathology in the assessment of tumour regression grade in rectal cancer. BJC 117:1478–1485. https://doi.org/10.1038/bjc.2017.320 CrossRefPubMed Sclafani F, Brown G, Cunnigham D, Wotherspoon A, Mendes LST, Balyasnikova S, Evans J, Peckitt C, Begum R, Tait D, Tabernero J, Glimelius B, Rosello S, Thomas J, Oates J, Chau L (2017) Comparison between MRI and pathology in the assessment of tumour regression grade in rectal cancer. BJC 117:1478–1485. https://​doi.​org/​10.​1038/​bjc.​2017.​320 CrossRefPubMed
12.
Zurück zum Zitat Lefvre JH, Mineur L, Kotti S, Rillier E, Rouanet P, de Chaisemartin C, Meunier B, Mehrdad J, Cotte E, Desrame J, Karoui M, Benoist S, Kirsin S, Berger A, Panis Y, Piessen G, Saudemont A, Prudhomme M, Peschaud F, Dubois A, Loriau J, Tuech JJ, Meurette G, Lupinacci R, Goasgen N, Parc Y, Simon T, Tiret E (2016) Effect of interval (7 or 11 weeks) between neoadjuvant Radiochemotherapy and surgery on complete pathologic Presponse in rectal Cancer: a multicenter, randomized, controlled trial (GRECCAR-6). J Clin Oncol 34:3773–3780CrossRef Lefvre JH, Mineur L, Kotti S, Rillier E, Rouanet P, de Chaisemartin C, Meunier B, Mehrdad J, Cotte E, Desrame J, Karoui M, Benoist S, Kirsin S, Berger A, Panis Y, Piessen G, Saudemont A, Prudhomme M, Peschaud F, Dubois A, Loriau J, Tuech JJ, Meurette G, Lupinacci R, Goasgen N, Parc Y, Simon T, Tiret E (2016) Effect of interval (7 or 11 weeks) between neoadjuvant Radiochemotherapy and surgery on complete pathologic Presponse in rectal Cancer: a multicenter, randomized, controlled trial (GRECCAR-6). J Clin Oncol 34:3773–3780CrossRef
Metadaten
Titel
Mucinous components assessed by magnetic resonance imaging in primary rectal cancer tissue before and after chemoradiotherapy and tumor response
verfasst von
Hiroshi Miyakita
Sotaro Sadahiro
Takashi Ogimi
Gota Saito
Kazutake Okada
Akira Tanaka
Toshiyuki Suzuki
Hiroshi Kajiwara
Hiroshi Yamamuro
Takeshi Akiba
Publikationsdatum
26.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Colorectal Disease / Ausgabe 8/2018
Print ISSN: 0179-1958
Elektronische ISSN: 1432-1262
DOI
https://doi.org/10.1007/s00384-018-3047-1

Weitere Artikel der Ausgabe 8/2018

International Journal of Colorectal Disease 8/2018 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

CME: 2 Punkte

Prof. Dr. med. Gregor Antoniadis Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

CME: 2 Punkte

Dr. med. Benjamin Meyknecht, PD Dr. med. Oliver Pieske Das Webinar S2e-Leitlinie „Distale Radiusfraktur“ beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

CME: 2 Punkte

Dr. med. Mihailo Andric
Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.